A fizika kalandja

A fizika kalandja

A fizika egységes fogalomrendszere

2022. augusztus 12. - 38Rocky

Korábbi bejegyzések 

Előző bejegyzés

A fizika fogalmi rendszerének kialakulása hosszú történetre néz vissza. Először a klasszikus mechanika fogalomrendszere alakult ki, ami a makroszkopikus világból érkező megfigyeléseken alapul. Fordulatot hozott a fizika történetében, amikor eljutott az anyagi világ végső elemeinek feltárásához, viszont ez nem járt együtt a fogalomrendszer új eredményekhez való hozzáigazításával. Ennek az írásnak egyik célja, hogy az anyag elemi objektumai mellé társítsa a fogalmi világ alapvető építőköveit. A modern fizika arra törekszik, hogy felépítse a kölcsönhatások egységes elméletét, ehhez az út a fizika egységes fogalomrendszerén keresztül vezethet. Az írás másik célja, hogy bemutassa azt a törekvést, amely az egységes fizikai fogalomrendszer felépítésére irányul.

A mechanika fogalmai

A fizika fogalomrendszerét nem tudjuk szétválasztani a matematikai fogalmak fejlődésétől. Ennek nagyszerű példája Newton elmélete, aki kéz a kézben fejlesztette tovább a fizikát és a matematikát. Ennek kulcsfontosságú momentuma a folytonosság és az infinitezimális változás precíz megfogalmazása. Induljunk ki a tér és az idő fogalmaiból. A tér az egymásmellettiség világa, az idő az egymásutániságé. Amíg a tér pontja szimmetrikusak a felcserélésre, ez nem teljesül az idő esetén. A térnek nincs kitüntetett előrehaladási iránya, szemben az idővel. Ezt a távolság fogalmával mutathatjuk be. A térbeli távolság nem függ attól, hogy melyik pontból indulunk el a másik felé, ezért a távolságot mindig pozitív érték jellemzi. Amikor a háromdimenziós térben meghatározzuk a P(r’) = P’(x’,y’,z’) = és P(r) = P”(x”,y”,z”)  pontok távolságát, a komponensek négyzetösszegét képezzük:

A négyzetes  összefüggés megengedi a negatív értéket is a gyökvonásban, de mi pozitív mennyiségnek tekintjük a távolságot. Az idő dimenziójában az események között eltelt idő fogalmát használjuk, aminek előjel lehet pozitív és negatív is, attól függően, hogy a jelenből a jövő felé, vagy fordítva a múlt felé haladunk. Pozitív, ha t” későbbi idő, mint t’:

didő = t” – t

Ha megfordítjuk t’ és t” sorrendjét negatív értéket kapunk, ami azt fejezi ki, hogy az okozat előtörténetére vagyunk kíváncsiak, vagyis a múlt felé haladunk.

Folytonosság és infinitezimális változás

A térbeli és időbeli távolság nagyságát elvben tetszőlegesen kicsinyre választhatjuk, ez felel meg a tér és idő folytonos szerkezetének. Ez viszont mérésekkel nem ellenőrizhető kijelentés, hiszen a mérési pontosság nem lehet végtelen, ezért extrapolálunk, vagyis átvesszük a matematikából a folytonosság fogalmát, mely szerint a koordinátaváltozás tetszőlegesen kicsiny lehet. Így lép be az infinitezimális változás fogalma a fizikába, és ezen alapul matematikában a függvények differenciálási szabálya. Az egyébként bonyolult fizikai összefüggések az infinitezimális tartományban leegyszerűsödnek, minden összefüggés megfogalmazható egyszerű arányosság formájában. Ezt használta fel Newton is, amikor az erő fogalmát az erő által okozott gyorsulással – azaz az r(t) pályafüggvény idő szerint képzett második differenciálhányadosával kapcsolta össze:

F = m·(d2r(t)/dt2) = m·a

 Az arányossági tényező a tehetetlenség, vagyis a tömeg. A mechanika további fontos fogalma az impulzus (lendület), amit a sebesség és a tömeg szorzata definiál, és megadja, hogy egy mozgó test mekkora lökést gyakorolhat ütközéskor:

p = m·(dr(t)/dt) = m·v

A lökést úgy jellemezhetjük, mint ami megváltoztatva a mozgó test sebességét, illetve impulzusát, és ezáltal az erő szerepét játssza el:  F = dp/dt.

Véges változások

 Az infinitezimális tartományból át kell térni a véges méretű mozgásokra, amikor leírjuk a testek mozgási pályáját. Ennek matematikai eszköze az integrálás, amely által az erőtörvényből kiindulva eljutunk a mozgási pályához. A pálya alapvető jellemzője egy állandó, ami nem változik meg a mozgás során, ez valójában az energia definíciója. Az energiának két összetevője van, egyfelől a potenciális energia, amely létrehozza a mozgást, másfelől a már létrejött mozgáshoz tartozó energia, vagyis a mozgási energia. A kettő összege állandó, ami közvetlenül származtatható a newtoni erőtörvény integrálásával. Ennek konkrét alakja azonban eltér, attól függően, hogy van-e kapcsolat a tér és az idő koordinátái között. A klasszikus mechanika a független leíráson alapul, amely szerint az energia kifejezése a következő:

E = Ekin + Epot = ½mv2 + Epot = ½p2/m + Epot

Az Epot potenciális energia az erőből származtatható az erő által végzett munka kiszámításával, de járható a fordított út is, amikor a térkoordináták szerint deriváljuk a potenciál függvényt, ez a gradiens művelet:

F = –gradEpot(x,y,z).

A tér és idő összekapcsolódása

 A relativitáselmélet szerint a tér és időkoordináták összekapcsolódnak, ha valamilyen v sebességű rendszerben írjuk le egy test mozgását, ez a Lorentz transzformáció, amely akkor érvényes, ha a megfigyelést állandó v sebességgel mozgó koordinátarendszerben – vagyis inerciarendszerben – végezzük. A kiinduló elv, hogy a c fénysebesség állandó, vagyis független attól, hogy a megfigyelő és a fénykibocsátó objektum között mekkora a v sebesség. Ebből származtatható az invariancia törvény.

Eseménytávolság

Hasonlítsunk össze két „eseményt”, amit a tér és idő koordináták együttese ír le, nevezetesen S(r’, t’) és S(r”, t”). Az eseménytávolság definiálásához alakítsuk át az idő dimenziót térdimenzióvá a c fénysebességgel beszorozva. Ekkor ugyan térdimenzióhoz jutunk, de fennmarad a különbség az eseménypontok felcserélési szabályában, hiszen az idő esetén megfordul a távolság előjele, míg a tér koordináták esetén nem. A többdimenziós távolságképzésekor négyzetre emeljük a koordinátákat, ezért az előjelváltást úgy tudjuk figyelembe venni, ha az időből képzett koordinátát imagináriusnak vesszük, ennek megfelelően a téridő időkoordinátája ic·t lesz.  Viszont a négyzetes összegben a negatív előjelet a térkoordinátáknál alkalmazzuk, mert ez biztosítja, hogy az eseménytávolság valós értékű legyen:

Az így definiált eseménytávolság a téridő struktúrájának invariánsa, ami független a választott referenciarendszer sebességétől. Ez a szabály az alapja az inerciarendszerek ekvivalenciájának. Az invariancia azáltal valósul meg, hogy ha a referencia rendszer sebességét nagyobbnak választjuk, akkor az időbeli és térbeli távolság azonos mértékben csökken. Határesetben, amikor a sebesség a c értékhez tart a tértávolság nulla lesz, és az eseménytávolság megegyezik az időbeli távolsággal. A négyzetes összefüggés megengedi, hogy az eseménytávolság akár pozitív, akár negatív legyen. Ha azt akarjuk kifejezni, hogy az ok megelőzi az okozatot, akkor a pozitív előjelet választhatjuk t’ és t” sorrendjétől függően.

Kovariancia törvény

Koordináta transzformáció szempontjából az x, y, z és t koordináták azonosan viselkednek, mint a ∂/∂x, ∂/∂y, ∂/∂z, ∂/∂t deriváltjaik, és a kvantummechanikai operátor definíció szellemében megfogalmazhatjuk az invariancia szabályt a px, py, pz impulzusból és az E energiából felépített négyes vektorra is:

E2 = p2c2 + m02c4

Ezt az összefüggést nevezi a fizika kovariancia törvénynek. Ebben az invariánst az m0 nyugalmi tömeg képviseli. A nyugalmi tömeg tehát az eseménytávolság invarianciájának folyománya. Vezessük be a p0 = m0c impulzus dimenziójú mennyiséget, amikor is az

E2/c2 = p2 + p02

kifejezéshez jutunk. Itt a négyzetes összeadási formula már szuggerálja az értelmezést, hogy az energiában két impulzusvektor hatása összegződik, az egyik a külső mozgást írja le, a másik a részecskék saját impulzusa, amely gömbszimmetrikus forgást ír le, és így a külső és belső impulzusok négyzetösszegében a kereszttag átlaga eltűnik.

Nulla tértávolságú mozgások

A mozgás matematikai szempontból a tér és idő koordináták közötti függvénykapcsolat, amiben alapvető szerepet kapnak a differenciálhányadosok. Fizikai szempontból a mozgásokat két típusba soroljuk, a szokásos külső mozgás, amelynek alanya – tehát „ami mozog” – egy másik mozgástípus, amit belső, vagyis elemi mozgásnak nevezhetünk. Ez az elemi mozgás pedig nem más mint az elemi részecskék világa. Ebben a felfogásban úgy értelmezzük az elemi részecskéket, mint egy határértéken történő mozgásformát, amelyben a relativisztikus tértávolság nulla! Ez a fénysebességű mozgások alapelve, mely szerint nincs valamilyen eleve létező anyag a térben, például éter, hanem a téridőnek van egy sajátos mozgási állapota. Ezen elemi mozgásformák által lesz a matematikai térből fizikai tér, vagyis a teret nem tekintjük többé puszta rendezési elvnek, hanem fizikai világunk meghatározó entitásának fogjuk fel. De hogyan válik az elemi mozgás érzékelhető anyaggá, hogy jön létre a tömeg? (Csak megjegyezzük, hogy valójában nem is a tömeg az elemi mozgás legfontosabb jellemzője, az igazán lényeges állapotjellemző az impulzusnyomaték, azaz a spin.)

Tömegnövekedés és tömegteremtés

Mi az eredete a tömegnek? Ennek megértéséhez nyúljunk vissza a kovariancia törvényhez, és alkalmazzuk a tömeg és energia közötti E = m·c2 ekvivalencia szabályt, és vezessük be a külső impulzus számára a p = m·v jelölést. Ez elvezet a tömeg sebességfüggéséhez:

Ennek értelmében a vc határesetben a tömegnövekedés végtelenhez tart, vagyis a külső mozgás nem érheti el a fény sebességét tömeggel rendelkező objektumok esetén. Más a helyzet a téridő belső mozgásánál, mert ez a tömegmentes tér sajátmozgása! A tömegnélküliség mint nullához tartó határérték fogható fel, amelyet végtelenhez tartó tényezővel szorozva már véges értéket kaphatunk. A kovariancia törvénybe tehát „be van építve” a tömeg létrehozásának lehetősége. De önmagában az csak lehetőség, hogy a fénysebességű mozgás tömeget hozzon létre, ehhez még további feltételnek is teljesülni kell.

A fénysebességű forgásoknak két alaptípusa van, az egyik a körforgás, amit síkforgásnak is nevezhetünk, a másik a gömbforgás, vagy kettősforgás, ami a háromdimenziós tér minden irányán átfut. Az előbbi forgás típus alkotja meg a bozonokat, az utóbbi a fermionokat. A kettősforgással jellemzett fermionoknak már van tömege és töltése is, de ez mire vezethető vissza? A tömeg létrejötthez szükség van egy geometriai feltétel teljesülésére is. Fogalmazzuk ezt meg két elemi fogalommal, az egyik a valahol levés, a másik az összekapcsolódás! A valahol levés azt jelenti, hogy valamilyen fizikai objektum jelöli ki a tér pontjait. Ennek eszköze a gömbszimmetrikus forgás, vagyis a fermion. A gömbszimmetrikus forgás mennyiségi jellemzője a frekvencia, ez határozza meg a tömeget is: annál nehezebb odébb lökni ezt a belső forgást, minél nagyobb annak frekvenciája! A tömeg és frekvencia kapcsolatát a Planck elektromágneses hullámokra megadott összefüggése: E = h·f adja meg, amely összekapcsolható az anyag hullámtermészete miatt az E = m·c2 ekvivalencia szabállyal. Az f frekvenciájú forgáshoz tartozik egy r sugár is, ami a gömbforgások c értékű felszíni sebességéből következik: c = 4πr·f. (Figyelem: a térforgás egységsugarú gömbjének felülete 4π, szemben a körforgás 2π kerületével.) Körforgásnál viszont a c = 2πr·f összefüggés határozza meg a sugarat, vagyis a gömbforgás sugara fele lesz a körforgáshoz képest, a felezett sugár pedig feleakkora impulzusnyomatékot ad. Ez fejeződik ki abban, hogy a gömbforgásokkal definiált fermionok spinje S = ½, szemben a körforgással értelmezett S = 1 spinű bozonokkal.

A részecskék mint elemi mozgások

A részecskéket úgy értelmezhetjük mint a tér önfenntartó fénysebességű forgásait. Az előbbiekben már előrevetítettük, hogy a forgásoknak két alaptípusa van, az egyik a körforgás, illetve síkforgás, a másik gömbforgás, azaz térforgás. Az előbbi esetben a részecske síkforgásához tartozik egy helyváltoztató haladó mozgás is, amely történhet akár a forgástengely irányában, de lehet arra merőleges is.

A tömeget úgy értelmezhetjük, mint az objektum ellenállását külső mozgási állapotának fenntartásáért, ennek mértéke a tehetetlenségi erő. Ennek egyik formája a centrifugális erő, ami akkor lép fel, ha a fénysebességű forgás tömeget hoz létre. Viszont az önfenntartó forgás megköveteli, hogy létezzék egy visszatartó erő, ami ellensúlyozza a kifelé ható erőt:

Fcf = m·v2/r = p·v/r

A kifejezésben feltüntettük a p impulzust, hogy beszélhessünk centrifugális erőről akkor is, ha nincs nyugalmi tömeg, de az objektum rendelkezik impulzussal a fotonhoz hasonlóan. Ezt az impulzust Planck, illetve általános estben de Broglie nyomán a p = E/c = h·f/c összefüggés adja meg. Fénysebességű körforgás miatt a sebesség c = 2πr·f = ωr, és bevezetve a ħ = h/2π redukált Planck állandót, a következő kifejezés adja meg a centrifugális erőt:

Fcf = ħ·c/r2 = ω2ħ/c

A formulában szerepel a redukált Planck állandó, ami a fénysebességű forgás impulzusnyomatéka. Ez könnyen belátható az impulzus és a forgási sugár szorzatából: p·r = (h·f/c)·(c/2πf) = ħ. A fénysebességű forgás koncepció tehát annak felel meg, hogy a ħ Planck állandó nem csupán a foton energiáját határozza meg, hanem szerepet játszik valamennyi részecske felépítésében. De honnan származik az erő, ami kiegyenlíti a centrifugális erő hatását? Ehhez az általános relativitáselmélet adja meg a kulcsot, amikor a gravitációs erőt a tér görbületére vezeti vissza. De miért görbül a tér a tömeg körül? Erre magyarázatot a Lorentz kontrakció adhat: ha a tömegből gömbszimmetriájú forgás szabadul ki, melynek frekvenciája a Kepler törvény szerint változik, azzal értelmezni tudjuk a gravitációs erő távolságfüggését is. Ebben a szemléletben már nem oka a bolygómozgás törvényének a gravitációs vonzás, hanem megfordul a viszony: a gravitáció származik a forgásokból. Vagyis a forgás az elsődleges, ami megteremti a gravitációs erőt. Alkalmazzuk ezt az elvet a fénysebességű forgásra is! Ekkor a forgási centrumtól r távolságban a kerület nullára csökken, és így létrejön az 1/r2-tel arányos extrém mértékű térgörbület. Az innen származó ħ·c szorzattal jellemzett erőt nevezzük erős gravitációnak, amely két nagyságrenddel haladja meg a töltések közötti Coulomb kölcsönhatást az e2 = αħ·c összefüggés szerint, ahol α = 1/137 a Sommerfeld állandó.

Coriolis és Euler erők

A tehetetlenségi erők alapvető szerepet játszanak az egyes kölcsönhatások kiváltásában, ezért vegyük sorra ezeket. Forgó rendszeren belül történő v sebességű mozgásnál egy további tehetetlenségi erő lép fel, ez a Coriolis erő:

FCoriolis = 2m(vxω) = 2pxω

 A vektoriális szorzat azt fejezi ki, hogy ez a tehetetlenségi erő, akkor lép fel, ha a mozgási irány nem párhuzamos a forgási tengellyel. A fotonok haladó mozgása viszont párhuzamos a tengellyel, vagyis nem lép fel Coriolis erő. Éppen ez a tengellyel párhuzamos terjedési irány biztosítja, hogy a foton előrehaladása állandó frekvenciával és energiával menjen végbe, és a forgási sugár is azonos maradjon. A Coriolis erő hiánya magyarázza, hogy a nulla nyugalmi tömegű fotonnak miért nincs elektromos töltése sem.

Tehetetlenségi erő lép fel akkor is, ha egy külső forgatónyomaték a forgási frekvencia megváltozására kényszeríti az objektumot, ez az Euler erő:

FEuler = m·rxdω/dt

Az Euler erő a forgási síkban a mindenkori érintő irányában hat.

Összekapcsolódás

A térpontok nem függetlenek egymástól, közöttük erőhatások jönnek létre, ezt fejezzük ki az összekapcsolódás fogalmával. A kapcsolódást elemi forgások hozzák létre, melyek egyrészt fénysebességgel haladnak, másrészt c sebességgel forognak egy tengely körül. Ezek alkotják az elemi részecskék világának másik nagy csoportját, az S = 1 spinű kölcsönhatási bozonokat, amelyek közül már szó volt az elektromágneses kölcsönhatás közvetítőjéről, a fotonról.

A fizikai teret úgy foghatjuk fel, hogy az elemi mozgások által kijelölt pontjait elemi mozgások kapcsolják össze. A térpontok közötti kapcsolódásnak két iránya van, az egyik távolító, a másik közelítő. A távolító erőt nevezzük taszításnak, a közelítőt vonzásnak. Az üres tér, amelyben nincs anyag, vagyis nem léteznek benne elemi mozgások, csupán matematikai fikció, egyszerű rendezési elv. A fizikai tér viszont elemi mozgások összessége, amelyre ráépülnek a külső mozgások. Ezt az elvet képviseli az Einstein által megfogalmazott általános relativitáselmélet is.

Mezőelméletek

Milyen formái léteznek a tér pontjai – azaz az elemi objektumok – közötti kapcsolódásnak. A kérdést úgy vetjük fel, hogy miért éppen négy módja van a kölcsönhatásoknak, és milyen a viszony az egyes kölcsönhatások között? Szólni kell először a mezőelméletekről. De mi is a mező? A mező kölcsönhatási lehetőség. Itt a lehetőség fogalmának különös jelentősége van! Ennek illusztrálására nézzük az elektromos mező eredetét! Ha a térben elhelyezünk egy elektromos töltést, arra a töltéssel arányos erő hat. Ennek arányossági tényezője az elektromos mező. De hogyan épül fel ez a mező? E mögött a töltések összegzett hatása áll. Bármelyik két töltés között fellép a távolság négyzetével csökkenő Coulomb erő, amely lehet vonzás, vagy taszítás a két töltés előjelétől függően. A kölcsönhatásban lévő töltések száma az Avogadro szám (6·1023) nagyságrendjébe esik. Ennyi kölcsönhatást páronként összegezni lehetetlen, ezért együttes hatásuk leírására vezetjük be a mező (field) fogalmát. Van azonban egy bökkenője a definíciónak! Ha most odateszünk egy további töltést a mező hatásának mérésére, akkor ez a töltés is hozzájárul a mezőhöz, viszont ezáltal a töltés önmagára való hatását is bevisszük a leírásba. Persze mondhatjuk, hogy a töltések óriási száma miatt ez nem okoz gondot. Van viszont egy kivétel, ha a töltés sajátenergiáját akarjuk kiszámítani. Ezt úgy végzik el, hogy gondolatban a töltést apró elemekre bontják és elviszik a végtelenbe, majd a centrumba visszahozva kiszámítják, hogy a Coulomb erővel szemben ez mekkora munkavégzést jelent. Az eredmény végtelen lesz, ez a dilemmája mind a klasszikus, mind a kvantum mezőelméletnek, a kvantumelektrodinamikának. Mit kell kezdeni evvel a végtelennel? Valójában semmit, mert ez a végtelen az elkövetett logikai hiba „büntetése”. Egyrészt az elemi töltést nem lehet felbontani, másrészt a töltés nem hat önmagára, csak a többi töltésre.

Mágneses mező és a reltivitáselmélet

A mozgó töltések között fellép egy retardációs hatás is, amely forgató jellegű, ennek mértékét a v sebesség és a c fénysebesség aránya határozza meg. Ez a mágneses kölcsönhatás, amit az elektrodinamika a mágneses mezővel ír le. Ennek fellépését a retardációs effektus okozza: mivel minden hatás véges c sebességgel terjed, így nem elegendő a térkoordinátákat figyelembe venni két töltés közötti kölcsönhatásban, hiszen a hatás bekövetkeztekor a két részecske pozíciója már megváltozott. Emiatt az elektromágnesesség a négydimenziós téridőben érvényesülő kölcsönhatás. Maxwell korában, aki a klasszikus elektromágneses mezőelmélet végső formáját megalkotta, a relativitáselmélet még nem született meg, ennek ellenére ez a formalizmus már megfelelt a relativitáselmélet invariancia követelményének.

A fény kvantumelmélete: QED

A Maxwell elmélet nagy felismerése, hogy a fény mint elektromágneses hullám írható le, de ebben még a folytonossági elv érvényesült: nem létezett alsó határ egy adott frekvenciájú fény energiájában. Planck korszakalkotó felfedetése, hogy a fény is kvantumos, amelynek egysége a foton. Ez vezetett el az elektromágnesesség kvantumelméletéhez, a kvantumelektrodinamikához (QED), amely a virtuálisan kibocsátott és elnyelt fotonok hatására vezeti vissza az elektromos és a mágneses mezőt. Mivel a foton impulzussal és impulzusnyomatékkal is rendelkezik, ez ide-oda lökődést idéz elő a töltött részecske pozíciójában, és ide-oda perdülést az orientációban, ez hozza létre egyrészt az elektromos, másrészt a mágneses mezőt és ezek fluktuációját, amit kvantumfluktuációnak nevezünk.  A fluktuáció hatása kísérletileg megfigyelhető az anomális mágneses nyomaték értékében és a Lamb shiftben. (itt csak utalunk rá, más írásokban ezt részletesen kifejtésre került).

A fénysebességű forgások koncepciója ezt a képet azzal egészíti ki, hogy fermionok gömbszimmetrikus térforgásában a két forgás viszonya lehet balkéz, illetve jobbkéz szimmetriájú, akárcsak a tér három tengelyének iránya. A háromdimenziós tér kétféle geometriája a kiralitás. A fénysebességű forgásmodellben az egyik felel meg az anyagnak, a másik az antianyagnak. A tehetetlenség és a gravitációs vonzóerő tekintetében nem játszik szerepet a kétféle kiralitás, de annál fontosabb, ha értelmezni akarjuk az annihiláció során bekövetkező tömegeltűnést. Ezért célszerű pozitív tömegről beszélni az anyagnál és negatívról az antianyagnál, hasonlóan ahhoz, hogy pozitív és negatív töltésről beszélünk a részecskék és antirészecske párjuk esetén. A tehetetlenség szempontjából az előjel kettőssége azért nem játszik szerepet, mert a kovariancia törvény szerint (ez a mechanika legáltalánosabb törvénye!) a tömeg négyzete határozza meg az energia kifejezését.

Térjünk vissza az elektromágneses tér és a töltés eredetére. A kettősforgás komponensei között fellép a Coriolis erő, amely periodikusan felborítja az önfenntartó forgás erőegyensúlyát, ami egytengelyű forgások, azaz fotonok kibocsátásához és elnyeléséhez vezet (ezek a virtuális fotonok). A fénysebességű forgások koncepciója tehát nem csupán felhasználja a QED hipotézisét, amikor virtuális fotonokkal magyarázza az elektromágneses kölcsönhatást, hanem annak okát is megadja, hogy miért jön létre a fotonok kibocsátása és elnyelése, vagyis a kvantumfluktuáció.

A virtuális fotonok forgási iránya (polarizációja) kétféle lehet függően a fermion kiralitásától. A foton impulzussal rendelkezik, ami kibocsátáskor visszalöki a fermiont, de ennek iránya attól függ, hogy merre mutat a forgási irány. A kétféle polarizációs irány jelenik meg abban, hogy a töltés lehet pozitív és negatív, vagyis a kölcsönhatás lehet vonzás vagy taszítás. Taszítás jön létre, ha a két töltés előjele, azaz a kiralitás megegyezik, és vonzás az ellenkező esetben. Ha végül feltesszük a kérdést, hogy mi a töltés? A válasz: a fermiont övező virtuális foton felhő, amelyet a folytonosan kilépő és elnyelődő virtuális fotonok tartanak fenn. Ezek impulzusa hozza létre az elektromos, impulzusnyomatéka a mágneses mezőt.

Kvarkfizika, a hármasság világa

Kíséreljük meg, hogy fogalmi rendszerünket kiterjesszük a részecskefizika kvark modelljére is! Ez már teljességgel a virtuális részecskék világa, mert kvarkokat önállóan nem figyelhetünk meg. Létezésükhöz az kell, hogy az erős kölcsönhatás mezonokat és barionokat építsen fel belőlük. Az összetett részecskék közül a legfontosabb a két nukleon, a proton és neutron, ezek alkotják az atommagokat.  A fénysebességű forgás koncepcióban úgy fogalmazhatunk, hogy léteznek egyszerű és összetett kettősforgások. Egyszerű kettősforgás az elektron és családjának tagjai, a müon és a tau részecske, illetve ezek antianyag társa, mint például a pozitron. Ezek mind tiszta királis állapotok és töltésük –e és +e, tömegükhöz pedig pozitív, illetve negatív értéket rendelhetünk az annihiláció értelmezése érdekében. Az összetett kettősforgás viszont kevert királis állapotokat hoz létre, a gyenge kölcsönhatás „csomagolási technikája” egyenlő súlyt ad a két kiralitásnak, ennek eredménye a töltéssemleges és tömeggel nem rendelkező neutrínó. Az erős kölcsönhatás viszont a kettősforgás három szakaszra bontásával hozza létre a kvarkokat, ami törttöltéseket eredményez. A töltés ±⅔e és ±⅓e lehet, az előbbit nevezzük up típusnak (flavour), az utóbbi a down. Az kétféle előjel a részecske-antirészecske kettősségre utal, konkrétan a ⅔e és –⅓e töltésű kvarkokból épül fel a proton (két up és egy down), illetve a neutron (egy up és két down). Amíg a virtuális kvarkok kevert királis állapotok, a két illetve három kvarkból vagy antikvarkból felépülő megfigyelhető részecskék már tiszta királis állapotok, amelyek töltése az elemi töltés egészszámú többszöröse, vagy nulla. Tehát a megfigyelhetőség együtt jár a tiszta kiralitással.

A harmadolási szabály megmutatkozik az erős kölcsönhatás jellegében is. A gravitáció „alanya és tárgya” a tömeg, az elektromágnesességé a töltés, ennek megfelelően az erős kölcsönhatásnak is megvan a maga alanya és tárgya, amit színnek nevezünk. Az „egyarcú” gravitációt a pozitív tömeg, az elektromágnességet a kétarcú töltés (pozitív és negatív) hordozza, addig az erős kölcsönhatás „háromarcú”, amit a három színnek nevezett entitás játszik el. A színekre épülő erős kölcsönhatás elmélete a kromodinamika. Annak analógiájára, hogy az elektromágneses kölcsönhatást az S = 1 spinű fotonok közvetítik, az erős kölcsönhatásban ezt a szerepet a gluonok játsszák el. Ezek feladata a három-három színnel rendelkező kvarkok összekapcsolása. Ez összesen kilenc kombinációt jelent, de ebből egyet, amely totálszimmetrikus, kizár az elmélet, és összesen nyolc különböző gluonról beszél. Az atommagokban a protonokat és neutronokat is az erős kölcsönhatás kovácsolja össze. Ebben a folyamatban a kvarkok kicserélődése játssza el azt a szerepet, mint a molekulákban az elektron, amikor kötést hoz létre atomok között.

De honnan származik a hármasság? A színnek miért pont három arca van? A fénysebességű koncepció alapja, hogy a mozgás az elsőrendű entitás, minden más tulajdonság, legyen szó tömegről, vagy kölcsönhatási erőről, ebből fakad. A kvantumelmélet egyik fontos tanulsága a zérusponti rezgés. Ha működik egy kitéréssel arányos visszatartó erő, mint például molekulákban az egyes atomokat rögzítő kémiai kötés, akkor ez örökös rezgési állapotot (oszcillációt) tart fent még a legalsó energiaszinten is. A kötésben levés és a rezgés elválaszthatatlan. A nukleonok megalkotásában is működik egy kötőerő, az erős kölcsönhatás, ezért a nukleonokban is elválaszthatatlanul jelen van a zérusponti rezgés. A térnek három dimenziója van, mindegyikhez tartozik egy oszcillációs irány. Ez a három oszcilláció formálja meg azt az entitást, amit színnek nevezünk. A mozgás elsőbbségét valló felfogásban ez azt jelenti, hogy elsődlegesen létezik ez a három oszcillációs mozgási állapot, ami kiváltja az erős kölcsönhatást.

A fermionoknak három generációja van, egyszerű kettősforgások esetén az elektron, müon és a tau részecske. Három generáció létezik a kvarkoknál is. A magasabb generáció nagyobb tömeget jelent, vagyis nagyobb forgási frekvenciát, ami egyúttal kisebb saját sugárral jár együtt. Mi magyarázza az egyes frekvenciák értékét, vagy ha úgy tetszik a tömegeket? Erre jelenleg nem tud válaszolni a részecskefizika standard modellje sem.

Spontán és indukált folyamatok

A részecskék állapotának változása két fő típusba sorolható, az egyik az átmenet, a másik az átalakulás. Mindkettő bekövetkezhet spontán módon, de kívülről indukálva is. A spontán átalakulás és átmenet arra utal, hogy az összetett mikro rendszereknek van saját belső történetük is, még ha ezt nem is tudjuk nyomon követni, csak bekövetkezésükhöz valószínűségeket rendelhetünk. Példa rá, amikor az atom nagyobb energiájú (gerjesztett) elektronja spontán módon kisebb energiájú pályára ugrik, vagy, amikor a radioaktív izotópok elbomlanak. Az átalakulásokat elősegíthetjük elektromágneses sugárzással, ez már indukált folyamat, amelyben a tér különböző pontjai közötti kölcsönhatás jelenik meg. Az egyik pont, ahonnan elindulnak a sugarak, a másik, ahol a változás bekövetkezik.

EPR paradoxon

 Itt eljutottunk egy olyan ponthoz, ami számtalan félreértést, paradoxont idéz elő. Felteszik gyakran a kérdést: ha kiválasztunk egy neutront, meg tudjuk-e mondani, hogy mikor fog átalakulni? Csak annyit tudunk mondani, hogy negyedórán belül a neutronok fele fog átalakulni. Hol van a kérdésben a hiba? Ott, hogy csak akkor tudunk egy részecskét „kiválasztani”, ha látjuk, vagy kitapogatjuk. Amíg a neutron nem változik meg, nem ad magáról semmi hírt, vagyis nem látjuk, nem tudjuk „kitapogatni”. A mikrovilág fizikája, a kvantummechanika eleve tudomásul veszi, hogy vannak „láthatatlan” állapotok, ilyen például az elektron stacionárius állapota az atomban. Mivel az atomban nem látjuk az elektron mozgását, tartózkodási esélyéről csak valószínűségi kijelentéseket tehetünk. A kvantummechanika elmélete olyan matematikai módszer, ami elvégzi az esélylatolgatást, és emiatt valószínűségekről beszél az időbeli lefutás, a „pálya” pontos leírása helyett. Éppen ezért a kvantummechanikát nem kell, sőt nem is lehet „rejtett paraméterekkel” kiegészíteni, amiről az EPR paradoxon szól. (Az elnevezés Einstein, Podolsky és Rosen nevére utal, akik felvetették a kvantummechanika kiegészítésének szükségességét.) Az EPR paradoxont úgy kell értelmezni, mint egy logikai hiba „büntetését”.

Kvantumátmenet

Kvantumátmenetről akkor beszélünk, ha egy részecske állapota úgy változik meg, hogy a sajátfrekvenciája (tömege) és töltése ugyanaz marad. Erre példa, amikor az atomban kötött elektron megváltoztatja pályáját, például az L = 1 p pályáról átugrik az L = 0 s pályára (L az elektronpálya impulzusnyomatékának kvantumszáma). Ezt az átalakulást a foton S = 1 spinje közvetíti biztosítva az impulzusnyomaték megmaradását. Hasonló a helyzet, amikor a mágneses mezőben lévő elektron átugrik az Sz = ½ spin polarizációs állapotból az Sz = –½ állapotba. Ugyanilyen átmenetet hoznak létre a spinnel rendelkező atommagok is mágneses mezőben. Az átmenet mindig csak a részecske külső mozgását változtatja meg, de a belső mozgás változatlan marad a spin polarizációs irányától eltekintve.

Részecskeátalakulás és gyenge kölcsönhatás

Az átalakulás már a részecske belső, szerkezeti mozgását változtatja meg, ekkor megváltozik a sajátforgás frekvenciája (tömege), de megváltozhat a töltése is. Az előbbi eset következik be, amikor a müon, vagy tau részecske alakul át elektronná, az utóbbinak felel meg a neutron átalakulása protonná az alfabomlás során. Ehhez az összetett változáshoz már összetett közvetítő mechanizmusra van szükség, amit a gyenge kölcsönhatás elmélete ír le. Ennek főszereplője a W bozon, amely szöges ellentéte a fotonnak, mert van elektromos töltése és tömege is, ráadásul ez a tömeg messze meghaladja valamennyi megfigyelhető fermionét. A nagyon különböző tulajdonságok ellenére a W bozon mégis a foton közeli rokona: ez is egytengelyű forgás összekapcsolódva egy terjedő mozgással, amelynek iránya azonban merőleges a forgási tengelyre, ami pedig a forgási sugár fénysebességű növekedését idézi elő. A sugárnövekedés viszont frekvenciacsökkenéssel, azaz energiavesztéssel jár együtt. A W bozonnak van töltése is, mert a terjedési irány merőleges a forgástengelyre, azaz fellép a Coriolis erő. A töltés előjele lehet pozitív és negatív is a forgás polarizációs iránya szerint.  A tömeg létezését pedig az okozza, hogy a táguló W bozon mozgási centruma helyben marad – ellentétben a fotonnal – vagyis ez a részecske helyhez kötött mozgási állapot. A W bozon tömege valójában indulási, vagy képződési mennyiség. Viszont épp a gyors frekvenciacsökkenés teszi alkalmassá a W bozont, hogy átalakítsa az elemi részecskéket, mert a tágulás során végigpásztázva a rendkívül széles frekvencia skálát bármelyik fermionnal rezonanciába léphet. Erre épp azért van lehetőség, mert a W bozon tömege nagyobb, mint bármely fermioné a részecskefizika Standard Modellje szerint.

A fénysebességű mozgás önfenntartási elve kézenfekvő magyarázatot kínál arra is, hogy a neutron alfabomlásának első fázisában hogyan bocsáthat ki egy nála közel százszor nagyobb tömegű W bozont. Nem sérül ugyanis az energiamegmaradás elve, mert a tömegnek megfelelő energiát ellensúlyozza a térgörbület által létrehozott negatív potenciális energia. A fermiont alkotó kettősforgás a részecskehatáron nem lép túl, vagyis ott a frekvencia nullára csökken, a frekvenciaugrás pedig kiváltja az Euler erőt. Ennek nagysága attól függ, hogy milyen széles az a zóna, amelyben bekövetkezik a frekvencia lecsökkenése. Ez a részecske sugaránál jóval kisebb tartományban valósul meg, ezért nagyobb lesz az Euler erő, mint a fénysebességű kettősforgás ħc/r2 nagyságú centrifugális ereje. A centrifugális és Coriolis erővel szemben az Euler erő nem sugár, hanem érintő irányú, amiért az erő által kiléptetett egytengelyű forgáshoz tengelyre merőleges terjedés társul. Ezt a mozgást testesíti meg a W bozon. Mivel a zónaszélesség csak kisebb lehet, mint a részecskesugár, így a kilépő bozon tömege nagyobb lesz, mint a kibocsátást végző fermioné. A kölcsönhatás második fázisában a neutronból (a kvark elméletben a down részecskéből) kilépő S = 1 spinű W- bozon úgy alakulhat át S = ½ spinű elektronná, ha ennek során egy töltéssemleges neutrínó is létrejön. Ez biztosítja az impulzusnyomaték (spin) megmaradását. A neutrínó töltéssemlegessége annak felel meg, hogy ekkor a kétféle kiralitás egyenlő súllyal van jelen. A kétféle kiralitás egyenlő súlya nem csak a töltést, hanem a tömeget is megszünteti. Ez összhangban van a megfigyeléssel, hogy a neutrínó fénysebességgel mozog. A Napból érkező neutrínók száma elmarad az elméletileg várt értéktől, amit a neutrínó oszcillációval magyaráznak. Ebben feltételezik, hogy a különböző generációjú fermionok átalakulásából származó neutrínók eltérő tömeggel rendelkeznek. Erre a hipotézisre azonban nincs szükség, mert a neutrínó – még ha nem is rendelkezik tömeggel – impulzusa attól még lehet, akár csak a nullatömegű fotonnak. A neutrínó oszcilláció pedig magyarázható az impulzusok különbségével is.

Ahhoz hasonlóan, ahogy a gyenge kölcsönhatás egybecsomagolja a két királis kettősforgást, a kétféle polarizációjú síkforgás is egybeköthető, ez a mozgási állapot a gyenge kölcsönhatás semleges Z bozonja. Az elektrogyenge kölcsönhatás mezőelmélete csokorba köti a fotont és a három gyenge kölcsönhatási bozont (W+, W-, Z), jelentős lépést téve a közös mezőelmélet megalkotása felé. Ennél is továbblép a kromodinamika beillesztése az egységes mezőelméletbe, amelyben már 12 bozon szerepel a 8 gluon felvétele miatt. Egyedül a gravitáció maradt ki a sorból, amit nem sikerült kvantumos alapra helyezni. A kudarc okát abban látom, hogy a feltételezett gravitációt közvetítő graviton nem létezik, sőt szerintem nem is létezhet.

A gravitáció közvetítője: a kepleron

Bár spinnel rendelkező graviton nem létezik, még sincs arról szó, hogy a gravitációnak ne lenne közvetítő mechanizmusa. A fermionból kiléphet a kettősforgás is a tehetetlenségi erők (Coriolis, Euler, centrifugális) kombinációja révén, de a kilépő forgás frekvenciája sok-sok nagyságrenddel lecsökken. Ez azt eredményezi, hogy a részecske határán az extrém görbület nem csökken le teljesen nullára, egy kicsiny térgörbület fennmarad, és ez a távolsággal tovább csökken a Kepler törvénynek megfelelően. A forgás kerületi sebessége a fénysebességtől messze elmarad, de a Lorentz kontrakció révén így is létrejön egy kicsiny térgörbület, ami a szokásos gravitációt eredményezi. A lassú kettősforgások felhőként övezik a fermiont, de ennek a felhőnek nincs tömege, impulzusa és impulzusnyomatéka sem, vagyis nem tekinthető sem bozonnak, sem fermionnak. Ezt a sajátos mozgást nevezzük el Kepler tiszteletére kepleronnak!  Vagyis a fermionokat két felhő veszi körül, az egyiket a virtuális fotonok alkotják, a másik a kepleron felhő. Az előbbinek van impulzusa és impulzusnyomatéka, ezáltal fejti ki hatását, az utóbbi viszont a tér szerkezetét szabja át. A görbületek összeadódnak és bármilyen csekély az egy-egy részecske által okozott görbület, a részecskék hatalmas száma miatt –  bolygó, vagy csillag méretekben – már a gravitációs erő dominanciára tehet szert, és fekete lyukakban még a fényt is foglyul ejtheti.

Oksági lánc és távolhatás

A modern fizika törekvése, hogy minden kölcsönhatást bozonokkal írjon le, mintha elfelejtkezne valamiről, mégpedig a neutrínók egyik fontos funkciójáról. Mielőtt erre rátérnénk térjünk vissza az elektromos kölcsönhatásra!. Valahol a térben, lehet az akár egy távoli csillagban, vagy galaxisban is, egy elektron átugrik egy másik állapotba és kibocsát egy fotont. Itt a Földön, például a szemünkben, egy másik elektron elnyeli ezt a fotont és megváltoztatja állapotát. Miről van tehát szó? Két távoli elektron kerül egymással kölcsönhatásba, ezt oksági láncolatként fogjuk fel, és a fény (foton) fogalmával kötjük össze. Lépjünk tovább! Most egy neutron alakul át valahol, például a Napban, és alfabomlással átalakul protonná miközben kibocsát egy elektront és egy neutrínót. Ez a neutrínó is hosszú útra kel és megérkezve a Földre, egy protont átalakít neutronná. Itt is arról van szó, hogy két részecske, most egy neutron és egy proton, oksági kapcsolatba kerül. Ezt az átalakulást közvetíti a neutrínó. A neutrínó viszont fermion, vagyis a kölcsönhatások közvetítése nem egyedül a bozonok kiváltsága. Miért lenne hát kötelező a gravitációt is bozonok közreműködésének tulajdonítani? Indokolt tehát a törekvés, hogy más típusú elemi mozgást keressünk a gravitáció közvetítésére, így kerül a képbe a kepleron. Másik tanulság, hogy a gyenge kölcsönhatás nem kizárólag rövidtávon működik. Ennek a kölcsönhatásnak ugyanis két arca van, az egyik valóban csak közvetlenül a részecske határon fejti ki hatását, ezt végzi el a W bozon. A másik viszont távolba hat, ezt az átalakítást már egy fermion, a neutrínó hajtja végre.

Összefoglalás

Fizikai világunkat a tér fénysebességű sajátmozgásai építik fel. A tér pontjait gömbszimmetrikus kettősforgások, vagyis fermionok jelölik ki. Ezek önfenntartó mozgások, ahol egyensúlyban van a kifelé ható centrifugális erő és a befelé húzó erős gravitáció, amit a fénysebességgel forgó tér görbülete hoz létre. A fermionok összekapcsolódnak fénysebességgel terjedő mozgások kibocsátása és elnyelése által. A folyamatokat fénysebességgel forgó rendszerben működő tehetetlenségi erők (Coriolis és Euler) idézik elő.

Minden kölcsönhatást valamilyen fénysebességgel terjedő mozgás közvetít, ez bozon az elektromágneses és erős kölcsönhatásban (foton, illetve gluonok), a gyenge kölcsönhatásban egy bozon és egy fermion együttműködése játszik szerepet (W és Z bozon, illetve neutrínó), a gravitációt viszont spinnel nem rendelkező kettősforgások (kepleronok) hozzák létre.

Végül foglaljuk össze, hogy mi az a fizikai entitás, ami kiváltja a kölcsönhatást, és mi az, amire hat:

  • A gravitáció alanya és tárgya a tömeg, vagyis a fénysebességű kettősforgás tehetetlensége,
  • az elektromágneses kölcsönhatásé a töltés, vagyis a virtuális foton felhő,
  • az erős kölcsönhatásé a szín, vagyis a zérusponti rezgés három iránya,
  • a gyenge kölcsönhatásé a kettősforgás frekvenciája és kiralitása.

Így valósul meg a mozgás primátusa a fizika világában.

Miért dominál az anyag az antianyag felett?

c0d2dcdf954f7d912a0f5d5ab72da4e2.png 

Korábbi bejegyzések elérése

Előző bejegyzés

A kozmológiai elméletek vitatott kérdése, hogyan vált uralkodóvá az anyag az antianyag felett, A részecskefizika Standard Modellje szerint az elemi objektumokra vonatkozó bomlási és képződési szabályok nem különböznek az anyaginak és antianyaginak tekintett részecskék esetén. Amikor nagy energiájú sugárzás részecskepárokat hoz létre, például elektront és pozitront, vagy protont és antiprotont, a két részecske száma kötelezően egyenlő. Az egyenlőségi szabály vonatkozik az annihilációra is: mindig azonos számú elektron és pozitron, illetve proton és antiproton semmisíti meg egymást a szétsugárzás folyamán.

Az anyag domináns szerepének értelmezéséhez ezért fel kell tételezni, hogy a képződő elemi objektumokra vonatkozó egyenlőség csak statisztikai értelemben igaz. A statisztikai véletlen szabályozza a kvantumfolyamatokat, emiatt bár a részecskék egyenlő valószínűséggel képződnek a valószínűség ingadozási szabálya miatt hol az egyik, hol a másik ideiglenesen többségbe kerülhet. Az univerzum ősi forró állapotából való lehűlés lehetővé tette a részecske képződést, melynek során az anyagtípusú részecskék, így a protonok és elektronok kis többsége alakulhatott ki a statisztikai ingadozás következtében. Amikor viszont beindult a nagy „leszámolás”, és a részecskék és antirészecskék „felfalták” egymást, az anyagi típusú részecskék pillanatnyi többsége megőrződött. Az akkori csekély többség alkotja jelenleg az univerzum több milliárd galaxisának anyagát.

Vessük fel a kérdést: emlékeztet-e bármi is az akkori univerzumra, ahol a részecskék és antirészecskék statisztikai egyensúlyban voltak, vannak-e jelenleg is ilyen objektumok? Két olyan különös objektumról beszélhetünk, ahol az anyagi és antianyag jelleg egyensúlyban van. Az egyikbe tartoznak bizonyos egzotikus atomok, a másiknak felelnek meg a mezonok az elemi részecskék közül.

Ilyen egzotikus atom a pozitronium, amelyben egy pozitron és egy elektron „kergeti” egymást. Ez a Hidrogén atom könnyű” változata, amelyben szintén egy pozitív és egy negatív részecske van jelen. A Hidrogénben a proton tömege közel kétezerszerese az elektronnak, ezért első közelítésben a proton mozdulatlannak tekinthető, amely körül végzi mozgását az elektron. Az elektron pályáját az jellemzi, hogy a keringéshez tartozó impulzusnyomaték a redukált ħ Planck-állandó egészszámú többszöröse. Ebbe belefér az is, hogy az impulzusnyomaték nulla, ezt nevezzük s pályának. De lehet ez a nyomaték ħ is, ez a p pálya, lehet 2ħ is, ez a d pálya, és még sorolhatnánk. Az impulzusnyomaték diszkrét változása jellegzetes kvantummechanikai jelenség. Ez eltér a makroszkopikus testek keringési szabályától, ahol megengedett az impulzusnyomaték folytonos változása, legalább is elvben.  A pozitroniumban is olyen szimmetriájú pályák alakulnak ki, mint a Hidrogén atomban. de ekkor nem beszélhetünk mozgási centrumról, hanem a két azonos tömegű részecske egymáshoz képesti mozgásáról van szó. Ezt a mozgást szokás úgy ábrázolni, hogy a két részecske egy köralakú pályán kergeti egymást. Példa rá a wikipedia szócikkében szereplő rajz is:

 

A legkisebb energiájú pálya a belső s pálya, amelynek valószínűség eloszlása gömb szimmetriájú. A valószínűségi eloszlás azonban nem azt jelenti, hogy a részecske az s pályán ténylegesen körbefut. A körpályának ugyanis nullától különböző sugara van, amiért nem lehet nulla az impulzusnyomatéka. A gömbszimmetriájú eloszlás csupán azt jelenti, hogy a két részecske között fellépő elektromágneses vonzás gömbszimmetrikus, vagyis az elektron „nem észlel” irányokat. A szokásos térszemlélet azonban három dimenzióra épül, így a kvantummechanika az iránytól független erőt gömbszimmetrikus potenciállal írja le. Viszont hogyan lehet a keringési pályának nulla az impulzusnyomatéka? Csakis úgy, ha a mozgási pálya áthalad a centrumon. A pozitroniumban ez a centrum a két részecske helyének felezőpontjára esik. A mozgás tehát úgy történik, hogy a két részecske időnként összeér a felező ponton, majd szétválnak a pozíciók, miközben a mozgás iránya mindig azonos marad. Tánchasonlattal élve a két részecske nem körtáncot lejt, hanem a szvingnek megfelelő mozgást hajt végre.

De milyen hosszú ideig tart az elektron és pozitron együttélése? A válasz megadásához tudni kell, hogy kétféle pozitronium létezik. Ennek oka, hogy az elektronnak és pozitronnak perdülete, spinje van, amelyhez ½ħ impulzusnyomaték tartozik, az ½ együtthatót nevezzük spin kvantumszámnak, a feles spinű részecskék a fermionok. Az olyan objektumban, ahol két fermion van jelen a spinek összeadódnak, vagy kivonódnak és az eredő spin lehet 0, vagy 1. Ennek megfelelően a pozitronim spinje is lehet nulla, ez a szingulett állapot, amit meta állapotnak is nevezünk, de szintén létezik olyan pozitronium is, ahol az S = 1 triplett állapot valósul meg, ez az orto pozitronium. Az egész spinű objektumok összefoglaló neve a bozon. A két pozitronium energiája közel azonos (6,8 eV), az alapállapotok kismértékben különböznek (0,001 eV a különbség), viszont élettartamukban nagy az eltérés, az S = 0 állapot élettartama 0,12ns, míg az S = 1 tripletté 142 ns. Ezt összevetve az elektron-pozitron kontaktusok gyakoriságával, azt kapjuk, hogy az egyik esetben millió, a másikban milliárd kontaktus szükséges az annihiláció bekövetkezéséhez, vagyis az annihiláció erősen spin függő jelenség.

A másik példa a mezonok esete. Ezek összetevői a kvarkok, melyek között egyaránt vannak anyagi és antianyagi részecskék is. A törttöltésű kvarkoknak két alaptípusa és három generációja van, ahol a generációk tömegükben különböznek, a magasabb generációknak jóval nagyobb a tömegük. Az első generáció kétféle kvarkja az up és down, melyek töltése az elemi töltés 2/3-a, illetve 1/3-a. A töltések előjele lehet pozitív és negatív, attól függően, hogy részecskéről, vagy antirészecskéről beszélünk. Anyagi részecske esetén az up pozitív, a down negatív töltéssel rendelkezik, antirészecskék esetén az előjel fordított. A mezonokat mindig egy anyagi és egy antianyagi kvark építi fel, ez biztosítja, hogy a mezon töltése csak az elemi töltés egészszámú többszöröse lehet.  A mezonok családjának leghosszabb élettartamú és legkisebb tömegű tagja a pion, vagyis a pi mezon, amelyet a kétféle első generációs kvark épít fel és spinje S = 0, vagyis a két összetevő kvark ellentétesen polarizált, viszont a töltése lehet 0, illetve ±e is. A töltéssel rendelkező pion élettartama rendkívül hosszú (12ns) a többi mezonhoz képest. Ennek oka, hogy a bomlást kizárólag a gyenge kölcsönhatás vezérli és nincs szerepe az elektromágneses kölcsönhatásnak. Természetesen az univerzum életében a mezonokban megnyilvánuló anyag és antianyag együttélés így is csak egy röpke pillanat.

Az anyag dominanciájának képviselői a fermionok, mégpedig a három kvarkból, vagy antikvarkból felépülő barionok. Legfontosabb képviselőjük a két nukleon, a proton és neutron, melyek az up és down kvarkokból épülnek fel. Ezek alkotják a periódusos rendszer mintegy 100 elemét és építik fel az univerzum anyagi világát. Ezekben a hármas kombinációkban soha sincs együtt anyag és antianyag. Az anyag dominanciáját tehát a kvarkok hármas összefogása teremti meg.

Elkerülhetők-e a káros élettani hatások magaslati életvitel esetén?

 

A sportolók, különösen a hosszútávfutók, előszeretettel táboroznak magas hegyekben, mert a ritkább levegőhöz való alkalmazkodás megnöveli a vörösvérsejtek mennyiségét, evvel javítva az izmok oxigén ellátását. A magasabb oxigén koncentrációnak azonban lehetnek káros következményei is, mert feldúsíthatják azokat a szabad gyököket, amelyek megtámadhatják és krónikusan károsíthatják az ereket. Ennek megvizsgálására szerveződött egy 19 tagú nemzetközi kutatócsapat Damian Bailey professzor (Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK ) irányításával. A team egyetlen magyar tagjaként a jelen írás szerzője is részt vett a kutatásban. Ebben szerepem a szabad gyök koncentráció meghatározása volt a magam által kidolgozott számítógépes eljárás segítségével. Az elért eredményekről számoltunk be egy jelentős amerikai tudományos folyóiratban (Free Radical Biology and Medicine, 184, 99-113 (2022)).

Földünkön mintegy 140 millió ember él magaslati (2500 m feletti) körülmények között. Közülük sokan szenvednek (5 és 10 százalék között) krónikus hegyi betegségben, azaz CMS-ben. Ennek fő kiváltó oka a csontvelő túlzott mértékű vörösvérsejt termelése, ami együtt járhat pulmonális hipertenzióval (olyan állapot, amelyben a magas vérnyomás deformálja a tüdő, és a jobb oldalon a szív artériákat)

Előzetes vizsgálatok arra utalnak, hogy a kóros folyamatokban kulcsszerepe lehet a szabad gyökök nitrogénoxidokkal (NO) történő reakcióinak, az úgynevezett OXNOS mechanizmusnak, amely ezáltal gátolja az NO molekulák biológiai szabályozó szerepét. A folyamat részletei nem ismertek, de nagy valószínűséggel a mitokondriális szuperoxid (O2-) gyököknek lehet domináns szerepük. Emellett kiemelt szerepe lehet a gyökképződésben a fémek által katalizált folyamatoknak is. A Bailey által szervezett kutatócsoport feladatának tekintette, hogy összehasonlító vizsgálatokkal közvetlen bizonyítékokat szerezzen a szuperoxid gyökök szerepéről a krónikus magaslati betegség kialakulásában. A vizsgálatok legfontosabb eszköze egy mágneses spektroszkópiai eljárás (EPR) volt, amelyben a szabad gyökök elektronjainak rezonanciáját lehet megfigyelni és meghatározni a szabad gyökök szerkezetét és koncentrációját. Ez utóbbi volt feladata a jelen írás szerzőjének.

Az összehasonlító vizsgálatokban olyanok emberek vérét és érrendszerük állapotát analizálták, akik születésüktől fogva magaslati körülmények között élnek (La Paz, Bolívia, 3600m), de nem szenvednek egyéb krónikus betegségben. Elsősorban 55 és 60 év körüli férfiakra koncentrált a kutatás, mert köztük eleve nagyobb számban fordul elő a krónikus hegyi betegség (CMS). A kiválasztott ajmara indiánok között 10 esetben jelentek meg CMS tünetek, mindenekelőtt a magas hemoglobin koncentráció (20 g/dl felett) és a lecsökkent oxigén szaturáció (90 % alatt). Másik csoportot alkotott tíz szintén magaslaton élő férfi, akiknél nem lehetett megfigyelni CMS tüneteket.  A harmadik tízes csoport tagjai képezték a kontrollt az Egyesült Királyságból, akik a tengerszint közelében élnek. Mindhárom csoportban a kor mellett egyéb tényezők megegyezését is megkövetelte az összehasonlíthatóság biztosítása.

A kontroll csoport esetén nem volt kimutatható mennyiségű szabad gyök, annál inkább a két másik csoportban, különösen azok esetén, akiknél jelentős CMS tünetek jelentek meg, itt a szabad gyök koncentráció duplája volt a többi magaslaton élőhöz képest.

Külön vizsgálatok történtek a vas katalitikus hatásának ellenőrzése érdekében is. Ekkor az aszkorbinsav (C-vitamin) hatására keletkező EPR jel növekedését lehetett tanulmányozni. Ennek célja volt, hogy tisztább képet kapjunk a szuperoxid gyök és az NO molekulák közötti OXNOS mechanizmusról.

A vizsgálatokat kiegészítették a táplálkozási szokások összevetése is. Az étkezési szokások és a CMS kialakulása között határozott összefüggést lehetett találni: a magaslaton élők között. azoknál jelentkezett a betegség, akik jóval kevesebb gyümölcsöt és zöldséget fogyasztottak. Ez a trend a kevesebb antioxidáns, a C és E vitamin fogyasztásához kapcsolódik. Nem sikerült viszont egyértelmű kapcsolatot találni ásványi sók (magnézium, szelén, vas) bevitele és a CMS tünetek kialakulása között.

A vizsgálatokban az OXNOS mechanizmus tisztázásán keresztül közelebb jutottunk annak megértéséhez, hogy miért van szükség az érrendszer karbantartásához antioxidánsokra, illetve a gyümölcsökben és zöldségben gazdag táplálkozásra. Ez még az oxigénben szegényebb körülmények között is elősegíti az egészség megóvását. Természetesen az eredmények megbízható statisztikai analíziséhez nagyobb létszámú csoportokra támaszkodó vizsgálatokra is szükség lenne.

A mozgás fogalomváltozása a mikrofizikában

A mozgás fogalomváltozása a mikrofizikában

Pálya, állapot és szimmetria

A mikrofizika által nyújtott információk korlátozottsága megköveteli szokásos fogalomrendszerünk átalakítását. Ennek keretében juthatunk arra a következtetésre az előző írásban, hogy az anyag és a mozgás viszonyát újra kell értelmezni. Amíg a makrovilágban elérhető információ alapján az anyag az elsődleges a mozgáshoz képest, a mikrovilág legapróbb objektumainak, az elemi részecskék természetének megértéséhez, már olyan fogalmi rendszer rendelhető, amelyben a mozgás egy specifikus formája, a fénysebességű forgás, válik elsőbblegessé mint az anyag teremtő mozgása. Ebben az írásban arra térek ki, hogy az atomokat felépítő belső mozgásokban hogyan kell átalakítani a mozgás és a tér fogalmát, hogy az megfeleljen az atomok és molekulák által nyújtott információ természetének.

Klasszikus pályamozgás és a kvantumállapot

Kiindulópontunk Newton óta, hogy a testek mozgása tetszőleges pontossággal nyomon követhető és az objektumok helyzetváltozását az idő folytonos függvényével írhatjuk le. Így jutunk el a pálya fogalmához. De milyen információ érkezik hozzánk arról a folyamatról, amikor atomokban az elektron végzi mozgásait? Amíg nem történik változás a mozgás szerkezetében az elektron nem látható, csak arról szerzünk tudomást, ha ugrást végez két állapot között. Ekkor a híradás a kibocsátott, vagy elnyelt fotonok megfigyelésének köszönhető. Az elektron mozgási pályáját tehát nem tudjuk nyomon követni, és ezért előtérbe kerül az állapot fogalma a mozgási pálya megadása helyett. Azt a pályát, amit nem láthatunk, nevezzük stacionárius állapotnak Bohr javaslatát követve. A stacionaritás azt jelenti, hogy nincs információnk az elektronmozgás időbeliségéről, viszont gondolkodásunk az időn alapul, emiatt könnyen kerülünk paradoxonok csapdájába, amikor az időbeliség elvesztése miatt át kellene térni egy másfajta gondolkodásra, amelyben a mozgási pályák helyett csak mozgási állapotokról beszélhetünk. Ez nem csak az elektron mozgására vonatkozik, hanem az atommagok szerkezetére is a radioaktív elemek bomlásakor. Nem tudjuk, hogy az atommagban milyen mozgásokat végeznek a protonok és neutronok, csak azt vesszük észre, hogy változás történt a mozgási állapotban, amikor a radioaktív elem átalakul. Hasonló a helyzet a molekulavibrációk esetében is. amíg egy rúgó rezgését pontról pontra követhetjük, a molekulavibrációknak csak az eredményét látjuk, amikor vonalak, vagy sávok jelennek meg bizonyos frekvencián a vibrációs állapotok közötti ugrások következtében. A mozgás időbeliségének elvesztése a részecskéket alkotó fénysebességű forgásokra is vonatkozik, valójában ez a mozgásforma is állapotként értelmezhető.

A felsorolt valamennyi esetben mikroobjektumok mozgásáról van szó, vagyis továbbra is jelen van a mozgás, de ehhez már más fogalom tartozik, amikor is az idő hiányában belép egy új dimenzió. A mozgás térbelisége továbbra is fennmarad, amit már az új dimenzió függvényében vizsgálunk. Ez az új dimenzió a valószínűség. A klasszikus mechanika szemszögéből nézve a valószínűség gyakoriságot jelent. A mozgási állapotot úgy jellemezhetjük, hogy a mikroobjektum milyen gyakran juthat a különböző tértartományokba. vagyis a teljes mozgási pályán belül mekkora az egyes pozíciók előfordulási gyakorisága.  A mikrovilág szempontjából úgy foghatjuk fel a valószínűség belépését, mint találgatást. Vajon a mozgási pálya lefutásának ismeretlensége miatt mekkora súllyal található meg a vizsgált részecske a tér egyes pontjaiban? A valószínűség megjelenése tehát nem az alkalmazott matematikai eljárás következménye, amikor a fizikai mennyiségeket többé nem függvényekkel írjuk le, hanem operátorokkal, amelyek a mozgási állapotot függvényeit transzformálják át egymásba. Az egyes fizikai mennyiségek számértékéhez úgy jutunk el, hogy keressük azokat a függvényeket, melyeket az energia, impulzus illetve impulzusnyomaték operátora önmagába transzformálja egy konstans szorzótól eltekintve (ezt a szorzót nevezzük az operátor sajátértékének, míg az önmagába transzformált függvény a sajátfüggvény). Az energiaoperátor sajátfüggvénye különleges szeret játszik, ez a vizsgált kvantummechanikai rendszer állapotfüggvénye. A klasszikus mechanika pályái és a kvantummechanika állapotai között a különbséget úgy is megfogalmazhatjuk, hogy az előbbi a mozgás egymásutániságát adja meg, míg az utóbbi a mozgás egymásmellettiségéről szól.

Foton a kvantumfolyamatok alapja

Atomokban kötött pályán mozgó elektronok esetén a különböző pályákhoz diszkrét ugrásokban változó energia tartozik.  A diszkrét jelleg oka, hogy a pályamozgás impulzusnyomatéka diszkrét értékeket vesz fel, mégpedig ez a redukált ħ Planck állandó egészszámú többszöröse lehet. Mi ennek fizikai oka? Ennek oka a fény kvantumának, a fotonnak, szerkezetében rejlik. Ugyanis a foton vezérli az elektron mozgásai! Az elektron mozgási állapotának minden egyes változását foton kibocsátás, vagy elnyelés okozza. Amíg az elektronra nem hat külső erő, egyenletes sebességű mozgást végez, amihez nem tartozik külső impulzusnyomaték. Ha azonban pozitív töltésű atommag vonzáskörzetébe kerül, ez letéríti az egyenes vonalú pályáról a mozgást, amit foton kibocsátás illetve elnyelés kísér. Minden ilyen változás a foton ħ nagyságú impulzusnyomaték változása által megy végbe. Végül az elektron csapdázódik az atomban egészszámú foton kibocsátás és elnyelés után, ami megköveteli, hogy az atomban kötött elektronok impulzusnyomatéka ħ egészszámú többszöröse legyen. Az impulzusnyomaték diszkrét nagysága pedig az elektronmozgás számára diszkrét energiaértékeket jelöl ki. Vagyis az elektronok diszkrét energianívóit ne tekintsük a részecske a priori tulajdonságának, hanem a fotonok mozgást szabályozó, illetve közvetítő szerepének.

Hogyan realizálódik ez a tulajdonság a kvantummechanikai formalizmusban? Ennek kulcslépése, hogy az energia, impulzus és impulzusnyomaték operátorát a foton fizikai tulajdonságaira vezetjük vissza! Például a foton energiája E = ħf = ħ/T (T a periódus idő). Az energiát úgy értelmezi a fizika, mint ami nem változik a mozgás során. Az időbeli állandóság matematikai kérdőszava viszont a d/dt időszerinti differenciálhányados. A foton energiájából átvéve 1/T együtthatóját, azaz ħ-t, kapjuk meg a ħd/dt energiaoperátort. Ezt még technikai okokból az i imaginárius egységgel kell szorozni, de ez már csak matematikai részletkérdés. Hasonló elv alapján – szintén a foton tulajdonságaira alapozva – jutunk el az impulzus illetve impulzusnyomaték operátorához is. Az energiamegmaradás szokásos egyenletébe helyettesítve a megfelelő operátorokat kapjuk meg a kvantummechanika alapegyenleteit, a Schrödinger illetve Dirac egyenletet a nem-relativisztikus, illetve relativisztikus mechanikában. Az egész kvantummechanika tehát nem más, mint a fotonok által vezérelt elektronmozgások matematikai megfogalmazása.

Diszkrét kvantumállapotok

Az energiaoperátor sajátfüggvénye az állapotfüggvény, ami magában hordozza egyrészt az egyes fizikai mennyiségek várható értékét és a valószínűségek térbeli eloszlását. Mint említettük az elektron stacionárius mozgási pályájáról nem érkezik információ, ezért csak valószínűségi kijelentéseket tehetünk arról, hogy a mozgás során az elektron hol lehet. De miért nem kapunk közvetlenül valószínűség eloszlást a formalizmusból? Ennek matematikai oka van, ami az egyes állapotok egyértelmű megkülönböztethetőségéből származik. Ha egy függvényt egy másik függvény komplex konjugáltjával megszorzunk és összegezzük (integráljuk) a szorzatot a tér összes pontjára, kétféle eredményt kaphatunk. Ha a két állapot azonos, akkor csupa pozitív mennyiséget kapunk, ez a valószínűségsűrűség, és az integrál az egységet adja meg. Ha viszont különböznek a függvények, akkor az integrál nulla lesz. Ez biztosítja, hogy minden egyes állapot megkülönböztethető legyen. Mivel a valósínűség csak pozitív lehet, az egyértelmű megkülönböztethetőség valószínűségi függvényekkel nem oldható meg, hiszen ekkor nem lehet nulla egyik integrál értéke sem.

A pálya és állapot fogalmak különbségét úgy is megfogalmazhatjuk, hogy amíg a klasszikus mozgási pálya időbeli egymásutániságot fejez ki, addig a kvantummechanikai állapotban a térbeli egymásmellettiség. jelenik meg. Ennek a különbségnek figyelmen kívül hagyása gyakran vezet látszólagos paradoxonokhoz, amire a későbbiekben felhozunk néhány példát is.

Az elektron „térszemlélete” a Hidrogénatomban

Az egyik példa, amellyel jól szemléltethető a pálya és állapotfogalom különbsége a Hidrogénatom. Kiinduló pontunk, hogy az elektron milyen információt kaphat a külvilágból? Ez esetben a külvilágot a hidrogénatommag képviseli, amelyet nagyobb tömege miatt mozdulatlannak tekinthetünk. Az információ forrása az atomaggal való kölcsönhatás potenciálisenergiája V = - e2/r, ahol e az elemi töltés és r az elektron távolsága a protontól. Ez a potenciális energia nem tartalmaz irányfüggést. Képzeljük magunkat az elektron helyébe: milyen fogalmat alkothatunk magunknak a külvilág térszerkezetéről? Irányfüggő információ hányában nem jelenik meg az irány fogalma. Csak egy dolog számít, hogy mekkora távolságban vagyunk az atommagtól! Ez tehát egy furcsa egydimenziós világ. Viszont mi, akik a kvantummechanikában valamit mondani akarunk az elektron mozgásáról a térben, a szokásos háromdimenziós világképünkből indulunk ki, és az x,y,z koordinátákkal felírt egyenlet alapján számítjuk ki az eloszlási valószínűségeket. Olyan eredményt kapunk, hogy léteznek különböző állapotok, amelyek az impulzusnyomaték, 0, ħ, 2ħ … értékéhez tartoznak, ezeket nevezzünk s, p, d… pályáknak. Szokásos módon az s pályát egy gömb alakkal ábrázoljuk, míg a p pályát két hurka, a d pályát négy hurka alkotja, amelyek eloszlását a tér különböző irányaiban rajzolunk fel. De ez a kép az elektron térszemléletéből nézve hamis, mert jogunk csak egyetlen dimenzió feltüntetéséhez van. Nulla csak úgy lehet az impulzusnyomaték, ha a mozgás áthalad a centrumon, viszont a nullától különböző impulzusnyomatékú pályák számára épp a centrum lesz „tiltott zóna”! Az egydimenziós világban az s pályát a centrumban maximális valószínűség jellemzi, a p pálya épp itt nulla, viszont azon kívül van egy maximuma a valószínűségnek, a d pályának pedig két maximuma van. Hogyan lesz ezekből az egydimenziós alakzatokból 3D alakzat a mi általunk megszokott világban?  Úgy, hogy egyenlő esélyt adunk az összes – egyébként valójában nem létező – iránynak. Például az s pályánál gömbszimmetriára hivatkozunk, de valójában ez a szimmetria fiktív, mert semmilyen információ nem támasztja alá ennek létezését, ha az elektron világában gondolkodunk. Nem kell tehát arra gondolni, hogy az s elektron a gömb minden irányát „bejárja”, ez elektron csak egy irányban mozog. Ebben tükröződik a különbség a felrajzolt és elképzelt elektron pálya és az elektron valódi állapota között.

  1. ábra. A vékony fekete vonal mutatja a szokásos 3D tér x,y,z koordinátáit, a piros vastag nyíl a Hidrogén elektronja számára érvényes egydimenziós féltengely, a középső kör az s pálya valószínűség eloszlását mutatja a 3D térben

Van-e esély arra, hogy az elektron valószínűségi eloszlásáról közvetlen információhoz jussunk? A válasz igen, ugyanis az elektron és az atommag között egyéb kölcsönhatás is létezik a Coulomb vonzáson kívül. Ez a mágneses kölcsönhatás, amit úgy írhatunk le, hogy az elektron mágneses dipólusa kölcsönhatásba kerül az atommag mágneses dipólusával. Például az s elektronok, amelyek véges valószínűséggel az atommagban is előfordulnak, a Fermi kölcsönhatás révén a valószínűségsűrűséggel arányos kölcsönhatást hoznak létre. Szintén megfigyelhetjük az elektronok és egyes atommagok között a gyenge kölcsönhatás révén keltett radioaktív átalakulást, amikor a belső s elektron csapdázódik az atommag egyik protonjában, azt neutronná átalakítva és csökkentve az elem rendszámát. (Például 40K alakul át 40Ar izotópba).

Az elektron „térszemlélete” a benzol molekulában

Másik példaként vegyük a benzol molekulát, amely egy szabályos hatszöget alkot és hat szén és hat hidrogén építi fel.

Milyen információra támaszkodhat ebben a világban az elektron? Egyszerűség kedvéért hanyagoljuk el az elektronok egymás közötti taszítását és támaszkodjuk a hat szén és hat hidrogén atommagból származó potenciálisenergiára. Itt már jogunk van háromdimenziós világban gondolkodni, de ez még nem lesz teljesen azonos megszokott koordinátáinkkal. Válasszuk úgy ki az x tengelyt, hogy az kösse össze a hatszög két szemben lévő csúcsát. Ez a tengely megkülönbözteti a pozitív és negatív irányt a szén kiszemelt elektronja számára, mert egyik irányból a szemben levő szén atommaggal van kölcsönhatásban, míg a másik irányban egy hidrogén atommag helyezkedik el. Az x tengely tehát kétirányú, ahogy azt megszoktuk a makrovilágban is. Jelöljük ki a z tengelyt a benzol síkjára merőlegesen. Itt már nem érkezik az elektron számára információkülönbség a sík alatti és feletti irányból, vagyis az elektron nem tud különbséget tenni aközött, hogy a sík alatt, vagy fölötte van-e. Az y tengelyt a két előző tengelyre merőlegesen vehetjük fel a benzol síkjában. Itt is fellép a kétértékűség, mert az elektron nem tud különbséget tenni a jobbra és a balra között. A kvantummechanikában ilyenkor a szimmetriára hivatkozunk, és kijelentjük, hogy a szimmetria miatt az elektron egyforma valószínűséggel lehet a sík alatt és felett is, amit szokásosan a pz pályával jelölünk.  A pálya valószínűség eloszlása olyan, hogy azonos „hurka” van a benzol síkja alatt és felett. Szokásos gondolkodásunk azonban zavarba jön. Hogy juthat át az elektron a sík feletti tartományból az alsóba, ha középen, a benzol síkjában, nincs is jelen? Ez gondolkodásunk csapdája, mert nem tudunk elszakadni attól a világtól, amit környezetünkből származó információk feldolgozása alakított ki. Hiszen mennyire természetes, hogy különbséget tehetünk, mi van az asztal alatt és felett. Ebben tájékoztat minket a gravitáció is. De a választott példában a benzol gyűrűt elválasztottuk a külvilágtól, ezért itt csak korlátozott térfogalom érvényesül. Az elektronnak nem kell a gyűrű alatt és felett is lenni, mert számára értelmetlen az alatta és felette megkülönböztetése. Itt állapotról van szó és nem mozgási pályáról, amit befut az elektron.

  1. ábra. A benzol gyűrű egyik szénatomjának térkoordinátái (piros vastag nyilak). Az x tengely teljes, az y és z irányban csak féltengely van. A pz pálya sík alatti és feletti része a szokásos 3D térben van ábrázolva

Itt jutunk el ahhoz a kérdéshez is, hogy mit jelent a szimmetria fogalma! A szimmetria fogalma nem más, mint egy összekötő fogalom, a mikrovilág korlátozott tere és a mi gazdag információs bázisra támaszkodó térfogalmunk között! Így kapunk választ arra a kérdésre is, hogy miért játszik a szimmetria alapvető szerepet, amikor a részecskevilág tulajdonságait írjuk le.

A molekulavibrációk állapotfogalma

A makroszkopikus pálya és a mikroszkopikus állapotfogalom közötti viszonyt szemléltessük a molekulavibráció példájával is. Amikor egy rugalmas tárgyat összenyomunk, vagy széthúzunk, akkor a megnyúlással arányos erő ébred benne, amit szokásosan F = –kx formulával írunk le, ahol k az erőállandó. Ekkor rezgések alakulnak ki, melynek frekvenciáját a  összefüggés adja meg. A rezgéshez tartozó energia az eredeti megnyúlás amplitúdójának négyzetével arányos. Az amplitúdó és evvel az energia folytonosan változik. Ennek analógiájára történik a molekulavibráció is, amelyben az atomokat kémiai kötések kapcsolják össze, de egymáshoz képesti távolságuk oszcillálni fog, és ennek frekvenciáját a klasszikus rezgés analógiájára a k erőállandóból származtatjuk. Ezt az oszcillációt azonban nem tudjuk időben követni, csupán azt figyelhetjük meg, amikor két szomszédos állapot között átmenet jön létre E = hf energiájú fotonok kibocsátása vagy elnyelése révén. Bármely két állapot között ugyanaz a rezonancia feltétel érvényes, amiért az oszcillációs energia ekvidisztans lépcsőkben változik. Ennek megfelelően a kvantummechanikai számítás En = (n + ½)hf formulával adja meg az energiát, ahol az n kvantumszám 0,1,2, … egészértékeket vesz fel. Milyen kapcsolatot találunk a klasszikus oszcilláció pályája és a kvantum oszcilláció állapotai között? A pálya időben folytonosan változó pozíciójával szemben, amikor kvantumállapotról van szó, a vibrációt végző atom pozícióját valószínűségi dimenzióval jellemezhetjük. Megkísérelhetjük a két szemléletmód kapcsolatát úgy értelmezni, hogy a klasszikus oszcillációnál meghatározzuk a különböző pozíciók felvételének gyakoriságát. Mivel a szélső helyzetben megfordul a mozgás iránya, itt lassabb a mozgás, míg a középső helyzetben lesz a leggyorsabb, vagyis a két szélső pozícióban láthatjuk a leggyakrabban az oszcilláló objektumot és középen láthatjuk legkevésbé. A kvantum oszcilláció alsó állapotai egészen más képet mutatnak. Az n = 0 alapállapot maximális valószínűsége éppen középen van, melynek eloszlását egy haranggörbe írja le. Ugyanakkor az n = 1, 2 és 3 állapotban növekvő számú valószínűségi maximum lép fel, és ezeket a maximumokat  nulla valószínűségű pozíciók választják szét. A benzol pz pályájához hasonlóan most is megkérdezhetnénk, hogyan közlekedik az oszcilláló atom a maximum helyek között, ha közötte nulla gyakorisággal fordul elő? Ez ugyanaz a gondolkodási hiba, amiről a benzolnál is szó volt. Ugyanis nem időbeli lefutásban kell gondolkodni, hanem az egymásmellettiség valószínűségi térképében!. Információ szempontjából az oszcilláló atom kevés adatra korlátozódik. Ugyanis egyrészt itt is egyetlen dimenzióra támaszkodunk, másrészt valamennyi átmenet azonos

energiájú fotonokat bocsát ki, vagyis nem tudjuk megmondani, hogy a megfigyelt foton melyik két vibrációs állapotot köti össze. Ez a korlátozott információ tartalom tükröződik a valószínűségi eloszlás szerkezetében.

 

 

931666cf2fbbc8bf808db84e9b4bf57c.png

  1. ábra. Az első négy vibrációs állapot valószínűségi eloszlása: n = 0 a középső fekete görbe, n = 1 a két maximumos görbe, n = 3 a piros, n = 4 a zöld görbe.

Korrespondanicia elv

Nagy kvantumszámok felé haladva azonban az eloszlás közelít a klasszikus oszcillátor esetéhez, a nagyszámú közbenső maximum intenzitása egyre kisebb lesz és a két szélső maximum erősen dominálni fog. Ez felel meg a kvantummechanika korrespondancia elvének, amely szerint minél nagyobbak a kvantumszámok, annál közelebb kerülünk a klasszikus mechanika számításaihoz. Az állapotok valószínűségi leírása aszimptotikusan közelít az időben felírt pályákra alapozott képhez.

Nullpont vibráció és a határozatlansági elv

Külön szót érdemel az n = 0 oszcillációs alapállapot, amely nullától különböző ½hf energiával rendelkezik, és bármilyen alacsony is legyen a hőmérséklet, ez az oszcilláció nem áll le, ezért nevezik ezt nullponti rezgésnek is. Ne feledjük el azonban, hogy ez a rezgés nem az időben jelenik meg, hanem a valószínűségi dimenzióban! Ennek oka szintén a fotonok tulajdonságában rejlik: a hf energialépcső az n = 0 esethez képest negatív energiába vinné át a rezgést, ami nem lehetséges. A jelenség a határozatlansági reláció speciális esete. Ha a rezgés leállna, akkor a pozíció és az impulzus egyaránt nulla lenne, és ez vonatkozna a két mennyiség mérési hibájának szorzatára is, vagyis nem érvényesülne a határozatlansági reláció! A nullponti rezgés létezése ezért a kvantummechanika elméletének ellentmondás mentességének szép megnyilvánulása.

Rendelkezünk-e kísérleti bizonyítékkal, hogy létezik a nullaponti rezgés? A válasz igen! Ezt szolgáltatja nekünk az egykristályok Röntgen, illetve neutron diffrakciója. Persze ne feledjük, hogy amikor egykristályról beszélünk, már nem egyedi, szeparált molekulára gondolunk, hanem nagyszámú rendezett molekula együttesére. Ekkor már nagymértékben kibővül az információs bázis, ekkor már teljes joggal beszélünk 3D térről is. A röntgensugarakat tükröző síkok szabályos szerkezetét torzítják a molekularezgések, ami kimutatható, azáltal, hogy az egyes atomok pozícióját már nem pontok képviselik, hanem ellipszoidok, melyek iránya és mérete a rezgési amplitúdó nagyságáról árulkodik. Itt is érvényes a megállapítás, hogy a bővülő információs bázis egyúttal gazdagítja megfigyeléseinket a fizikai jelenségekről, és kiterjeszti fogalmainkat a tér szerkezetéről.

Az anyag arcának fogalomváltozása a részecskevilágban

E = pc

 

A külvilágból érkező információk hatása gondolkodásunk fogalmaiban tükröződik. A mikrovilágból érkező információk oly mértékben térnek el megszokott környezetünkből érkező megfigyelésektől, hogy az megköveteli alapvető fizikai fogalmaink hozzáigazítását az elérhető információk jellegéhez.  Ez a fogalmi adaptáció azonban fájdalmasan hiányzik a mai fizikai gondolkodásból, ami számtalan zavart, félremagyarázást idéz elő mindenekelőtt a kvantummechanikában és a részecskefizikában. A szükséges fogalmi adaptáció irányába tesz kísérletet a következő írás.

A klasszikus fizika fogalomrendszere

Az elsődleges fogalom, amit a klasszikus fizika az anyaghoz rendel a tömeg, illetve folyadékok és gázok esetén a térfogategységre jutó tömeg, azaz a sűrűség. Ez a tömeg kvantitatív jellemzője az anyag mennyiségének, ami kapcsolódik az oszthatóság fogalmához. Az anyag mennyisége a feldarabolás során annak tömegével együtt változik. Az oszthatóságnak azonban határa van, amikor eljutunk az atomig, illetve a molekulákig.

 A tömeg mellett a következő alapfogalom a mozgás. Mozognak az égitestek, mint a Föld és a Hold, de megfigyelhetjük a labda vagy a madarak mozgását is, de mozognak a különböző közegeket alkotó részecskék, atomok és molekulák is. A lényeg, hogy mindig van valami „ami mozog”, itt azon van a hangsúly, hogy először kell létezni valamilyen anyagnak, ami tömeggel rendelkezik, és ez végzi a mozgást. Más szóval az anyag, illetve a tömeg mélyebb fogalmi szintet képvisel, mint a mozgás.

A pályafogalom folytonossága

 A testek mozgásáról a fény hozza számunkra az információt, amit vagy kibocsát, vagy visszatükröz a test. A klasszikus mechanika abból indul ki, hogy tetszőleges pontossággal és tetszőleges sűrűséggel érkezik hozzánk információ a test helyzetéről, vagyis az s(t) pályafüggvény folytonos és differenciálható. A differenciálhatóság miatt ebből képezhetjük a v(t) = ds/dt sebesség és az a(t) = ds2/dt2 gyorsulás függvényt. A mozgásmennyiség jellemzésére vezetjük be az impulzus (a lendület) fogalmát. Ha egy pingpong labda üt meg minket, alig vesszük észre, de ha egy azonos sebességű teniszlabda, azt már jókorát lök rajtunk, míg a futball labda le is dönthet minket lábunkról. Ennek a lökő hatásnak nagyságát adja meg a p = mv impulzus.

Az erő fogalom

A fizika feladata az okok felderítése: miért olyan a mozgás menete, ahogy azt a megfigyelt s(t) pályafüggvény mutatja? Ezt az okot adja meg az erő fogalmának bevezetésével. Ha a test mozgásállapota (azaz p = mv impulzusa) nem változik meg, vagyis a sebesség állandó, akkor azt mondjuk, hogy a testre nem hat külső erő. Ha viszont a sebesség változik, azaz a gyorsulás nem nulla, akkor azt az erő hatásának tudjuk be. Ez az erő passzív, utólagos definíciója, amikor a hatásból következtetünk vissza a ható erőre. A mozgásállapot leírásához azonban ennél többre van szükség: a kölcsönható erőt az anyag immanens tulajdonságaként kell megadni, például megmondani, hogy milyen erő lép fel a tömegek és a töltések között, illetve milyen erők hatnak az atomok belsejében. Ehhez ad kulcsot, ha megadjuk, milyen reláció köti össze a pályafüggvényt és az erőket.

Fizikai törvények infinitezimális megfogalmazása

Ezen a ponton kell felvetni a kérdést, milyen kapcsolat építhető fel a mozgást létrehozó erő és annak hatása között. Két út kínálkozik, a véges méretű pályát köthetjük össze a mozgást megváltoztató okkal. A másik út, amikor az infinitezimális tartományra korlátozódjunk, ahol határértékben nullához tartó változásokról van szó. Ennek előnye, hogy itt minden kölcsönhatás egyszerű arányosságra korlátozódik. Ezt alkalmazta Newton is, amikor kimondta az erő és a gyorsulás arányosságát:

F = ma

Az m tömeg mint arányossági tényező szerepel az összefüggésben, ami a test mozgásának tehetetlenségét jellemzi. A tömeg ezáltal kettős szerephez jut, egyrészt hat rá egy erő, ami elindítja a mozgást, ez bolygómozgás esetén a gravitációs erő, másrészt ennek az erőnek „ellenáll”, azaz tehetetlenséggel is rendelkezik. A newtoni törvény megfogalmazható az impulzus segítségével is kapcsolatot teremtve az erővel:

F = dp/dt

A Newton törvény és az energiamegmaradás

A mozgási pályák azonban véges kiterjedéssel rendelkeznek, amit a differenciális Newton egyenlet vonalmenti integrálásával határozatunk meg. Így jutunk el a mechanikai energia megmaradási tételéhez:

½mv2 + Vpot = p2/2m+ Vpot = E

Ez vezet el a felismeréshez, hogy az erő hatására történő változás mögött megbújik egy állandó mennyiség: az energia. Ez fejezi ki a fizikai gondolkodás célját: megtalálni az állandóságot a változásban.

A fenti formulában a Vpot potenciális energia az erő integráljából származik, amit a mechanika az erő munkavégzésének nevez. Ez a munkavégzés hozza létre a kinetikus energiát, amely pedig az ma kifejezés integrálja. Ezért az energiamegmaradás törvénye voltaképp a Newton egyenlet integrális alakjának tekinthető. A két törvény viszonyát úgy is megfogalmazhatjuk, hogy a változás törvényéből indulunk ki, de utunk végén eljutunk az állandósághoz, a megmaradáshoz.

A fenti ekvivalencia szabály azonban csak kis sebességeknél érvényes, és módosul a helyzet, amikor a v sebesség már közel van a fény c sebességéhez. Ennek oka, hogy a tér és idő koordináta transzformációja független egymástól, amíg a választott inercia rendszer sebessége kicsi, de nagy sebességnél már a tér koordináták a mozgás irányában lerövidülnek (Lorentz kontrakció), míg az idő koordináta dilatációja következik be. Ennek következtében a Newton egyenlet integrálja már más alakú kinetikus energiát eredményez:

Ezt nevezik a relativitáselméletben az energia kovariáns alakjának. Bár a formula látszólag jelentősen eltér a kinetikus energia nem-relativisztikus alakjától, könnyen belátható, hogy ha pc kicsi az m0c2 nyugalmi energiához képest, akkor visszakapjuk a kinetikus energia megszokott alakját.

A fény is anyag!

A kovariancia törvény fizikai lényegének megértése érdekében térjünk rá a fény, illetve annak egysége, a foton tulajdonságaira. Kiindulópontunk, hogy a fény is anyag! Mégpedig az anyag különleges formája, amihez nem tartozik nyugalmi tömeg. Ennek megértése azért nehéz, mert a tömegnélküliség szembemegy klasszikus felfogásunkkal az anyagról, amely az anyag létezését a tömeghez köti. A fény természetének megértésében a Maxwell egyenletek adják a kulcsot, amely a fényt a vákuumban c sebességgel terjedő elektromágneses hullámokhoz rendeli. De mi az a közeg, amelynek hullámai megalkotják az elektromágneses mezőt? Ez a kérdés azért merül fel, mert ha hullámokra gondolunk, legyen szó a víz hullámairól, vagy a hangról, a mögött mindig valamilyen közeg áll, melynek atomjai, vagy molekulái végzik összehangolt mozgásukat. Ez a gondolkodás vezette Maxwellt is, aki valamilyen különös közeget képzelt el, amit nevezhetünk éternek is, amelynek fodrozódása alkotja meg az elektromágneses hullámokat. Az éter fogalom bevezetése azonban nem oldja meg a kérdést, csak továbbhárítja. Mert azonnal hozza magával a további kérdést: de milyen anyag alkotja ezt a rejtélyes étert? Richard Feynman, aki a Maxwell egyenletekben a fizika nagy felfedezését üdvözli, meg is „rója” Maxwellt ezért a koncepcióért. Feynman felfogását matematikai fetisizmusnak is nevezhetjük, mert a fizikai realitás helyett megelégszik a matematikai formalizmus ellentmondás mentességével, és elégnek érzi, ha matematikai formulák kerülnek a fizikai objektumok helyére. 

Harmadik út: az alapfogalmak sorrendjének megfordítása

Jelenleg is ez a két felfogás viaskodik egymással, de létezik-e harmadik út, amelyik következetes képet rajzol fel a fotonok, sőt valamennyi részecske fizikai természetéről? Itt kell elgondolkodni azon, hogy milyen információ áll rendelkezésre, amiből az elemi részecskék szerkezetére következtethetünk. Az almát meghámozhatjuk, vizsgálhatjuk annak belsejét, de az elektront nem lehet meghámozni, az elektront nem lehet feldarabolni, nem lehet megnézni, hogy mi van az elektron belsejében, ilyen típusú információt nem nyújtanak számunkra a nagyenergiájú szóráskísérletek. Tudhatjuk viszont az elektronról a mágneses mezőben történő vizsgálatok révén, hogy spinnel, azaz impulzusnyomatékkal rendelkezik. A fotont sem lehet feldarabolni, de tudjuk, hogy összeköthet egymással két távoli elektront. Az egyik állapotváltozása kibocsát egy fotont, amely valahol a távolban, akár fényévekre megváltoztathatja egy másik elektron állapotát, például, amikor távoli csillagok fénye a szemünkbe jut. Van tehát kölcsönhatás, van tehát mozgás, de ehhez nem járul tömeg. A kölcsönhatásból viszont tudjuk, hogy a fotonnak van impulzusa és spinje is. A forgás indikátora a spin, amellyel valamennyi részecske rendelkezik, márpedig impulzusnyomatéka csak véges kiterjedésű forgó objektumoknak lehet. Ezért mondhatjuk, hogy valamennyi részecske elválaszthatatlan tulajdonsága valamilyen forgás.

Ez alapján juthatunk el a következtetéshez, hogy a részecskevilág elválaszthatatlan és elsődleges tulajdonsága a mozgás. Ebben még könnyű egyetérteni, de merészkedhetünk-e ez alapján újrafogalmazni az anyag és mozgás viszonyát? Ehhez már kopernikuszi bátorságra van szükség, mert gondolkodásunk alapkategóriáját kell megfordítani, meg kell fosztani trónjától a tömeghez kötött anyag primátusát. Ki kell mondani, amikor a részecskék világában járunk. már nem az anyag az elsődleges, ami mozog, hanem a mozgás válik elsődlegessé, amely megteremti az anyagot. Mégpedig nem akármilyen mozgásról van szó, hanem a fénysebességű forgások rendszeréről. Ezek alkotják a részecskevilág két alapkategóriáját a fermionokat és a bozonokat.

Ebben a felfogásban már nem az az alapkérdés, hogy „mi forog”, hanem az, hogy honnan származik a tömeg, milyen az az elsődleges mozgás, ami a tömeg létrehozásáért felelős. Hogyan értelmezhetjük ennek alapján a részecskék két főtípusát, a fermionokat és a bozonokat? A fermionokat kettős, azaz gömbforgások hozzák létre, szemben a körforgással, ami a bozonokat, így az elektromágneses kölcsönhatás közvetítőit, a fotonokat alkotja meg. A spint az határozza meg, hogy milyen nagyságú az a forgási tartomány, ami ismétlődéshez vezet, amikor az eredeti irány újra visszatér. Körforgás esetén ez 2π, ami megfelel az S = 1 spinnek, szemben a gömbforgás 4π ismétlődési periódusával, amihez az S = ½ spin tartozik.

Az energia és impulzus ekvivalenciája

A fotonokhoz nem tartozik nyugalmi tömeg, mert létüket a körforgás mellett a c sebességű terjedés definiálja, vagyis a foton számára nyugalmi állapot nem létezik. Zéró nyugalmi tömeg esetén a kovariancia törvényből következik, hogy az energia arányos az impulzussal:

E = pc

A foton nem rendelkezik tömeggel, viszont van impulzusa, azaz lökő hatása, ami pedig a mozgás mennyiségi jellemzője. Tehát van impulzus, azaz mozgás, de nincs tömeg! Az impulzusnak két forrása lehet, az egyik a test sebessége, a másik a fénysebességgel terjedő és nullatömegű elektromágneses hullám frekvenciája, illetve hullámszáma. A Planck törvény szerint E = ħω, amiért p = ħω/c = ħk, ahol ω a körfrekvencia és k a hullámszám. Az impulzus definíciója megfelel a de Broglie féle szabálynak is.

Az impulzus ezért alapvetőbb fizikai kategória, mint a nyugalmi tömeg. Az E = pc ekvivalencia pedig alapvetőbb reláció, mint a tömeg és energia E = mc2 ekvivalenciája!

A kovariancia törvény fizikai alapja

Térjünk most rá az elektronra, vagy bármelyik nyugalmi tömeggel rendelkező fermionra. A kovariancia törvény voltaképp csak azt fogalmazza meg, hogy az impulzusnak két összetevője van, az egyik a részecskét alkotó belső impulzus. Erre ugyanaz a szabály érvényes, mint az elektromágneses hullámokra, vagyis ez az impulzus fénysebességű forgástól származik és arányos a forgási frekvenciával. Az elektromágneses hullámoktól annyiban tér el, hogy gömbszimmetriájú kettős forgásról van szó, amely kijelöl egy centrumot és létrehozza a részecske tömegét. A másik impulzus komponens már a belső forgás által létrehozott tömeg külső mozgásától származik. A teljes impulzus a kettő eredője:

p = pk + p0

Az impulzus vektor négyzete:

p2 = pk2 +2pkp0 + p02

Fermionoknál a belső forgás gömbszimmetrikus, ezért összegzésben a kereszttag eltűnik. Alkalmazzuk az energia és impulzus ekvivalenciáját, ekkor az

E2 = pk2c2 + p02c2

összefüggéshez  jutunk. A „teremtő” belső forgás miatt p0 = m0c, és így eljutottunk a kovariancia törvényhez. Így válik magától értetődővé a relativitáselmélet energia törvénye is. Amikor sikerül a probléma gyökeréig hatolni, jutalmunk a felismerés, hogy a fizika alaptörvényei roppant egyszerűek. Például a kovariancia törvény mögött is csupán az impulzus két komponensének összeadási szabálya áll. Nem kell tehát egy különös, láthatatlan anyag, amelynek hullámzása hozza létre vákuumban a fény elektromágneses mezejét, vagy kitölti a fermionok belsejét. Alternatívát adhatunk a matematikai fetisizmus számára is, mert a matematikai formalizmus támaszkodhat egy konzekvens fizikai modellre, amely a fénysebességű forgásokon alapul.

Kiegészítő megjegyzések

A fénysebességű forgás által létrehozott tömeg az üres (tehát forgásmentes) térből szintén összhangba kerül a kovariancia törvénnyel. Ha ott alkalmazzuk az E = mc2 ekvivalenciát és átrendezzük az egyenletet, eljutunk a tömeg sebességfüggését leíró formulához:

Ha a v sebesség határértékben c-hez tart, akkor X értéke végtelen lesz. A nullatömegű forgásmentes tér tömegét 1/X-nek – azaz nullának – választva már véges tömeget kapunk.  Tehát a tömeg létrejöttének kulcsa a tömegnövekedés szingularitása. Az a kérdés is felmerül, hogy miért van nyugalmi tömege a fermionnak, és miért nincs a fotonoknak. Ennek oka a forgás szimmetriája: a gömbforgás kijelöl egy centrumot, ahová rendelhetjük a tömeget, szemben a körforgással, amely csak egy tengelyirányt határoz meg, és így a tömeg nem lokalizálható.

Arra a kérdésre is választ ad a modell, hogyan lehet a nullatömegű fotonnak impulzusnyomatéka. Ez az E = ħω = pc Planck-törvényből következik, mely szerint p = ħω/c Ez egyébként megfelel a de Broglie féle hullámtermészet impulzusának is. Az ω körfrekvenciával forgó és c kerületű sebességű forgás sugarat Rc = c/ω. Ezt a sugarat szorozva az impulzussal kapjuk, hogy az impulzusnyomaték – függetlenül attól, hogy mekkora a forgási frekvencia – mindig a redukált ħ Planck állandó lesz.

 

Relativitáselmélet és kvantummechanika a fénysebességű forgások tükrében

A harmadik kvantálás

Korábbi bejegyzések elérése

Korábbi írásokban többször előkerült a téma: hogyan egyeztethető össze a relativitáselmélettel a fénysebességű forgások koncepciója. Itt most továbblépünk, és azt vizsgáljuk meg, hogy el lehet-e jutni a relativitáselmélet törvényeihez, ha a fénysebességű forgás elvéből indulunk ki. A relativitáselmélet törvényei megjelennek a mikrovilág kvantummechanikai leírásában is, ezért azt a kérdést is felvetjük, hogy a kvantummechanikai egyenletek relativisztikus korrekciói hogyan építhetők fel a fénysebességű forgások alapján.

Elemi forgások és a külső mozgások

Kövessük ehhez kiindulásként „A mozgás mint a fizikai világ létalapja gondolatmenetét! A mozgásnak két alaptípusát különböztetjük meg, az egyik az elemi forgás, ami a részecskéket alkotja, ez a mozgás mindig fénysebességgel történik. A másik a már megalkotott részecskék külső mozgása, ahol a sebesség nem érheti el c-ét. Erről a külső mozgásról szól a szokásos fizika, ennek törvényeit fogalmazzák meg a klasszikus fizikában Newton mozgásegyenletei, vagy a kvantummechanikában a Schrödinger egyenlet, vagy ennek relativisztikus változata a Dirac egyenlet. Ezt viszi tovább a kvantumelektrodinamika mezőelmélete, amely az elektrodinamikát is kvantumos alapokra helyezi. Ez utóbbiból a virtuális fotonok fogalmát emeljük ki, amelyet a töltött részecskék állandóan kibocsátanak és elnyelnek, és ezek közvetítik a töltések között az elektromágneses kölcsönhatásokat. A kibocsátás és elnyelés folyamatához operátorokat rendelünk, amit kreáló és annihiláló operátoroknak nevezzünk, és ezek révén követjük az egyes részecske állapotok kvantumszámának változását. Ez a második kvantálás művelete.

A részecskék fizikai paraméterei és az elemi forgások

A fénysebességű mozgások koncepciójában a részecskék pozícióját felbontjuk két összetevőre: az r0 vektor a belső (azaz elemi) mozgásokat írja le, az rk vektor a külsőt, melyet a részecske centrumától számítunk:

r(t) = rk(t) + r0(t)

A részecskék szokásos fizikai paramétereit (tömeg, spin, töltés, mágneses dipólus) mint várható értékeket definiáljuk, amit az r0(t) által leírt belső mozgásokkal képzett integrálok határoznak meg. A modellben minden részecskét fénysebességű mozgások kombinációja adja meg, ahol a fotonokhoz egytengelyű, a fermionokhoz kéttengelyű fénysebességű forgásokat rendelünk. Ezek a forgások virtuálisak, azaz közvetlenül nem „fényképezhetjük” le pályájukat, szerepük abban nyilvánul meg, hogy létrehozzák a megfigyelhető fizikai tulajdonságokat. Ilyen tulajdonság – mint már említettük – a tömeg, az impulzus, az energia, az impulzusnyomaték, azaz a spin, és természetesen idetartozik az elektromos töltés is. Az elemi forgások hozzárendelését úgy végezzük el, hogy reprodukálják a már említett fizikai tulajdonságokat. Ez a hozzárendelés szükségképen valószínűségi jelleget ölt, melyben a belső mozgásokkal képzett várható értékek adják meg az egyes fizikai mennyiségeket, vagyis továbbvisszük a kvantummechanika szokásos szemléletmódját. Ezt a módszert nevezhetjük harmadik kvantálásnak.

A részecskék szerkezet meghatározó állandói: c és h

Az elemi mozgásoknak két szerkezet meghatározó állandója van, a c fénysebesség és a h Planck állandó. Az előbbi jelöli ki az energia és az impulzus arányát: E = p·c. Foton esetén ez a szokásos összefüggés, amit kiterjesztünk a fermionok belső, fénysebességű forgására is. Ennek megfelelően átfogalmazzuk a nyugalmi energia és nyugalmi tömeg ekvivalencia törvényét, amit írásunkban az elemi körforgás p0 amplitúdójú impulzusa és a nyugalmi energia közötti összefüggéssel definiálunk:

E0 = m0c2 = p0c

A másik szerkezeti konstans – fotonok esetén – a forgási frekvencia és az energia arányosságát fejezi ki:

E = p·c = h·f = ħω

ahol ħ = h/2π a redukált Planck állandó és ω = 2πf a körfrekvencia. A fénysebességű forgás koncepciójában a körfrekvencia a forgás szögsebességének felel meg. Az energia és frekvencia arányosságát szintén átvisszük a fermionok esetére is, de itt a kettősforgások miatt az Ω = ω/2 gömbfrekvencia jelenik meg a körfrekvencia helyett:

E0 = p0c = ħΩ = ħω/2

A gömbfrekvencia a szögsebesség fele, hiszen a kettősforgás kétszer szalad körbe, ami felezi a frekvenciát. A fénysebességű forgás alapelve, hogy kijelöl egy Rf sugarat, amelyhez c kerületi sebesség tartozik:

Rf = c

A fentiek alapján az Rf sugár és az impulzus szorzatával definiált impulzusnyomaték foton esetén ħ, fermion esetén – a feleződő sugár miatt – ħ/2 lesz, amit szokásosan az S = 1, illetve S = ½ spin jelöl.

A kovariancia törvény

Fotonok esetén nem beszélünk külső mozgásról, mert a fénysebességű terjedés a foton definíciós tulajdonsága. A nyugalmi tömeggel rendelkező fermionok térbeli – tehát külső – mozgásához pk külső impulzus tartozik. (Figyeljünk a vastag betűkre, amelyek mindig vektorokat jelölnek.) A részecske teljes impulzusát a külső és belső impulzusok összege adja meg:

p = pk + p0

Az impulzus nagyságát (ez már nem vektor!) a vektor négyzetéből határozhatjuk meg, ahol is

p2 = pk2 +2pk·p0 + p02

A sajátforgás impulzusa minden irányt egyforma valószínűséggel vesz fel, amiért <p0> = 0, és ha a külső és a belső mozgás független egymástól, akkor a két vektor szorzatának átlagértéke a két átlagérték szorzata lesz, vagyis a kereszttag eltűnik. Nem tűnik el viszont <p02>, mert a p0 amplitúdó minden irányban ugyanakkora pozitív mennyiség és egyenlő m0c-tel. Emiatt a belső mozgásra kiátlagolt impulzusnégyzet:

p2 = pk2 + m02c2

Az E = p·c arányosságot mint univerzális természeti törvényt értelmezzük, amely a teljes impulzusra vonatkozik, de nem érvényes a részleges külső impulzusra. Emiatt

E2 = pk2c2 + m02c4

Tehát az a feltételezés, hogy független egymástól a részecske külső és a belső mozgása, kiegészítve avval, hogy a fénysebesség és a teljes impulzus szorzata az energiával egyenlő, elvezet minket a relativitáselmélet alaptörvényéhez, amit az energia kovariancia elvének nevezünk.

A Lorentz transzformáció

Nézzük meg, hogyan állunk a tér és idő koordináták kapcsolatával, amit a Lorentz transzformáció ír le. A kvantummechanikai operátor formalizmus az energia és impulzus fogalmát az idő, illetve térkoordinátákkal való differenciálhányadosokra vezeti vissza (A szimbólumok feletti kalap jelöli az operátorokat):

Írjuk át ennek megfelelően a kovariancia elvet sajátérték egyenlet formájában:

Az egyenlet baloldalán a d’Alambert operátor szerepel, amely differenciális formában teremt kapcsolatot a tér és idő koordináták között. Érdemes megjegyezni, hogy a d’Alambert operátor kulcsszerepet játszik mind az elektrodinamikában, mind a relativisztikus kvantummechanikában. Töltésmentes térben felírva a Maxwell egyenleteket világosan látszik, hogy a d’Alambert operátor hatása akár az E elektromos mezőre, akár a B mágneses mezőre nullát eredményez. Ezt nevezzük Laplace egyenletnek, melynek megoldása írja le az elektromágneses mező hullámtermészetét. A fenti operátor sajátértéke viszont nem nulla, hanem pozitív, ami azt az esetet írja le, amikor a Maxwell egyenletek megoldását elektromos töltések jelenlétében keressük. A fenti relativisztikus egyenletben viszont nem a töltések, hanem a részecskék nullától különböző tömege vezet pozitív sajátértékhez a d’Alambert egyenletben. Vagyis a térben lévő anyagot egyaránt jelezheti a töltés, illetve a tömeg.

A d’Alambert operátor sajátérték egyenlete választ ad arra a kérdésre is, hogy milyennek kell lenni a koordináta transzformációnak. A klasszikus Galilei transzformáció, amikor egy x irányú u sebességű inerciarendszerben írjuk le a mozgást, az x’ = xu·t és t’ = t koordináta transzformációnak felel meg. A d’Alambert operátor ez esetben nulla sajátértéket ad, vagyis a Galilei transzformáció csak üres térben érvényes, és nem alkalmas olyan fizikai objektumok mozgásának leírására, amelyek tömeggel rendelkeznek. Nézzük viszont a Lorentz transzformáció hatását:

x’ = γ(xu·t)  és  t’ = γ(tu·x/c2)

ahol

γ = (1 – u2/c2)

A Lorentz transzformáció következménye a kovariancia törvény, mely szerint a tér és idő koordináták közötti eseménytávolság állandó:

c2t2 – (x2 + y2 + z2) = konstans

Ez a kovariancia törvény ekvivalens a d’Alambert operátor sajátegyenletével, ami nyilvánvaló, ha elvégezzük a differenciálásokat.

Iránytartó és irányváltoztató kölcsönhatások

Az eddigiekben a külső és belső mozgások függetlenségéről beszéltünk. Ez mindaddig helyes, amíg csak iránytartó kölcsönhatásokról van szó. (Az iránytartó kölcsönhatás gömbszimmetrikus külső mozgáshoz vezet.) Az elektromágneses kölcsönhatás általános esetben irányfüggő, amit felbonthatunk egy iránytartó és egy irányváltoztató (forgató) komponensre, az elsőt az elektromos, a másodikat a mágneses mezővel írjuk le. Irányfüggés egyébként a kölcsönhatás véges c sebességű terjedése miatt alakul ki, mert két test között a kölcsönhatást nem az határozza meg, hogy egymáshoz képest éppen milyen helyzetet foglalnak el, hanem az, hogy hol voltak korábban egymáshoz képest. Ez a retardációs hatás akkora irányfüggést okoz, amit a külső uk sebesség és a c fénysebesség aránya határoz meg. Ez mutatkozik meg a B mágneses és E elektromos mező közötti összefüggésben is:

B = ―ukxE/c

( A mágneses B mező definíciójára két konvenció létezik, sok helyen az itteni definíció helyett annak c-vel osztott értékét választják)

Az elektrodinamika skalár és vektor potenciáljai

 A kvantumelektrodinamikai felfogás szerint az elektromágneses kölcsönhatást virtuális fotonok váltják ki, egyrészt impulzusuk által (iránytartó elektromos erő), másrészt az impulzusnyomaték révén (forgató jellegű mágneses erő). A külső és a belső mozgások korábban feltételezett függetlensége viszont már nem érvényes, ha megjelenik a mágneses kölcsönhatás forgató hatása. A mágneses mező befolyásolja mind a külső mozgást (például az elektronok pályamozgását), mind az elektron (vagy bármely töltött részecske) belső forgását.  A kölcsönhatási mezőt potenciálok segítségével adhatjuk meg, amely annyiban tér el a potenciális energiától, hogy a potenciált szorozni kell az elektromos töltéssel. Az iránytartó elektromos mezőt a Φ(r) skalárpotenciál írja le, melynek térkoordináták szerinti deriváltja (gradiens) adja meg az elektromos mezőt: E = gradΦ(r), a forgató hatású mágneses mezőt az A(r) vektorpotenciál határozza meg a vektoriális differenciálás (rotáció) művelete által: B = rotA(r).

Kinetikus és potenciális energia

Az energiának két alapvető összetevője van, az egyik a mozgáshoz, a másik a mozgatáshoz tartozik, ezeket nevezzük kinetikus és potenciális energiának. A két komponens összegzési szabálya eltér az iránytartó és az irányváltoztató kölcsönhatás esetében. Skaláris mennyiségeket adunk össze az iránytartó elektromos kölcsönhatásnál, és vektoriális összegzésre van szükség irányváltoztatás esetén, amit a mágneses kölcsönhatás idéz elő. Emiatt a vektorpotenciál járulékát az impulzusvektorhoz adjuk hozzá:

p = pk + p0 + qA/c

(A c-vel való osztás alakítja át az energia dimenziójú qA potenciális energiát impulzus dimenzióba.) Meghatározzuk az így módosított impulzus nagyságát (ez már skaláris mennyiség), és ehhez hozzáadjuk a skalárpotenciál járulékát. A vektor nagyságának meghatározásánál közelítést alkalmazunk: négyzetre emeléskor elhagyjuk a vektorpotenciál négyzetét, ami csak elhanyagolható járulékot ad az impulzushoz. A legfontosabb relativisztikus tagokat megtartva:

p2 = pk2 + m02c2 + 2pk·p0 + 2qpk·A/c + 2q p0·A/c

Operátorok szorzatában rendszerint nem közömbös a tényezők sorrendje, de ettől eltekinthetünk megfelelően választott potenciálok esetén. A három utolsó tag képezi a Schrödinger egyenletet kiegészítő relativisztikus járulékokat. Ezeket meg lehet adni a Dirac által bevezetett spinor felbontással, de itt arra törekszünk, hogy a relativisztikus járulékokat a fénysebességű forgásokra vezessük vissza.

Relativisztikus korrekciók származtatása

Közelítésünk alapja, hogy a nyugalmi energia a domináns, amit kiemelünk a kifejezés elé és négyzetgyököt vonunk:

Ha a zárójelben szereplő mennyiségek kicsik, alkalmazhatjuk a sorfejtési közelítést, mely szerint

Ennek értelmében

p = m0c + pk2/2m0c + pk·p0/m0c + qpk·A/m0c2 + qp0·A/m0c2

Az E = p·c ekvivalenciát figyelembe véve, beírva az impulzus és energia operátorát és hozzávéve a qΦ skaláris potenciális energiát, kapjuk meg az atommag körüli pályán mozgó elektron Schrödinger egyenletét, kibővítve három relativisztikus taggal. Ez a három új tag: a spin-pálya kölcsönhatás és a mágneses Zeeman kölcsönhatás két összetevője, amely egyrészt a pályamozgástól, másrészt a részecske saját belső mozgásától származik. Elektron esetén q = ―e, ahol konvencionálisan a töltés negatív. Legyen a külső B mágneses mező homogén, ekkor a vektorpotenciál:

A = ½crxB = ―½cBxr

 Zeeman kölcsönhatás

Az elektronpálya mágneses mezőben történő energiaváltozása, azaz a Zeeman kölcsönhatás:

epk·A/m0c2 = e/(2m0c)Bxr·pk = e/(2m0c)B·rxpk = eħ/(2m0c)B·L = μBB·L

Ahol Lħ = rxpk a pálya impulzusnyomatéka és μB = eħ/(2m0c) a Bohr magneton. (Ha B-re annak c-vel osztott értékét választjuk, akkor a Bohr magneton kifejezésében nem jelenik meg c a nevezőben). Itt L(Lx, Ly, Lz) dimenziómentes kvantum operátor, amely ħ egységekben fejezi ki az impulzusnyomatékot, és sajátértékei csak egészszámok lehetnek. A mágneses mezőben fellépő energiát a részecske mágneses dipólusával jellemezhetjük:

Emágneses = ―μ·B

Ennek értelmében a pályamozgáshoz is tartozik mágneses dipólus: μL = μBL. Ez a dipólus hasonló szerepet játszik mágneses mezőben, mint a töltés elektromos mezőben a potenciális energia számításában. A dipólus viszont vektor mennyiség, amelynek a mágneses mezővel alkotott skaláris szorzata az energia. (A dipólus és a mező között képezhető egy vektoriális szorzat is, amely energia dimenziójú, de irányfüggő mennyiség és a dipólus időfüggését (forgását) írja le: dμ/dt = γμxB. A γ giromágneses arány határozza meg a dipólus forgási frekvenciáját (Larmor frekvencia).)

 Ha a mágneses mező irányában vesszük fel a z tengelyt, akkor Lz egészszámú sajátértékei határozzák meg a pálya mágneses kölcsönhatását.

 Az elektron sajátmozgásához tartozó mágneses kölcsönhatást analóg módon számíthatjuk, csak pk helyébe p0-át kell írni. Az egész értékeket felvevő Lz helyett, az Sz spin operátor lép fel, amely ±½ értéket vesz fel az elektront definiáló kettősforgás miatt (lásd fent). Az energiaszámításban az impulzusnyomaték feleződését kompenzálja a kölcsönhatásban fellépő kettes faktor, mivel két forgást kell figyelembe venni a várhatóérték képzésekor:

<r0xp0> = 2(±½ħ) = 2Sħ

Az elektron sajátforgásához tartozó mágneses momentum:

μS = 2μBS

(A kvantumelektrodinamikai számítások szerint a kettes faktor helyett kissé nagyobb szám szerepel a pontos képletben (2.0023), amit a virtuálisan kibocsátott és elnyelt fotonok hatása idéz elő.)

A teljes Zeeman kölcsönhatás a pálya és spin járulékok összege, vagyis

 ĤZeeman = μB(L+2SB

Spin-pálya kölcsönhatás

Utolsóként essék szó a <pk·p0>/m0c spin-pálya kölcsönhatásról, ami azt fejezi ki, hogy a kötött pályán mozgó elektron mozgása hatással van az elektron sajátforgására. Itt a levezetésnél kényegében a Wikipedia angol nyelvű szócikkét követjük: https://en.wikipedia.org/wiki/Spin–orbit_interaction.

A pk impulzus irányfüggését az U(r) = eΦ(r) gömbszimmetrikus potenciális energia határozza meg. Gömbszimmetria miatt az E elektromos mező gradiens művelete a Მ/Მr differenciálra egyszerűsödik, és E irányát az r/r egységvektor adja meg:

Felhasználva a korábban felírt összefüggést a mágneses és elektromos mező között, és átírva az uk sebességet pk/m0 alakba, a mágneses mező:

Ebben a pályamozgás által generált mágneses mezőben számítjuk ki az elektron 2μBS mágneses dipólusának energiáját. Ez az energia a négyzetgyök alatti kereszttagnak felel meg, ami kettővel osztódik a sorfejtés első tagjában, és így a spin-pálya kölcsönhatás kifejezése:

(A Wikipediában közölt levezetés ennek kétszeresét adja ki, amit egy ad hoc bevezetett új taggal korrigál. Az általunk követett módszerben erre nincs szükség)

 Dirac egyenlet kiterjesztése fermionokra

Dirac négydimenziós spinorok alkalmazásával bontotta fel a négyzetgyökös kifejezést.

Itt a ± szimbólumok feltüntetése jelzi, hogy a kovariancia kifejezése három különböző rejtett kétértékűséget tartalmaz. Dirac módszere alapozta meg a spin fogalmát, amit kétdimenziós Pauli mátrixok írnak le, további következménye a módszernek, hogy az energia sajátértékekre nem csak pozitív, hanem negatív megoldásokat is kapunk. Az utóbbi valójában abból fakad, hogy a kvantummechanika nem tud különbséget tenni a jövő és a múlt irányú folyamatok között. A folyamatok iránya viszont az energia előjeléhez kapcsolódik, hiszen az energia operátort az idő szerinti differenciálhányadossal definiáljuk.

A négyzetgyökvonás magában rejt azonban egy további kétértékűséget is, ami a négyzetes formában szereplő nyugalmi energiától származik. Ha nyolcdimenziós spinor felbontást alkalmazunk, ahogy azt már korábbi írásban bemutattuk, fellép egy újabb kétdimenziós Pauli mátrix, amely az anyag-antianyag kettősséget tükrözi, és képes leírni mind a törttöltésű kvarkokat, mind a töltés semleges neutrínókat. Ily módon lehetőséget kapunk, hogy a relativisztikus mozgásegyenlet ne csak az elektron típusú részecskéket, hanem valamennyi elemi fermiont leírja. Ez az általános fermion egyenlet egyúttal konzekvens kvantummechanikának is tekinthető, mert ebben nem csupán az energiát és impulzust, hanem a tömeget és a töltést is operátorok képviselik. A szóban forgó operátorok sajátértékei adják meg az egyes elemi részecskék töltését és tömegét.

Konklúzió

Az elemi objektumok mozgásának különböző mélységű szintjei vannak. A legfelső szintet írja le a szokásos kvantummechanika, amikor feltárja az elektron mozgásait az atomban. Ennél mélyebbre hatol a kvantumelektrodinamika, amikor már a kölcsönhatásokat is a fotonok virtuális képződési és eltűnési folyamataira vezeti vissza. A legmélyebb szintet a fénysebességű forgások alkotják, amelyek megteremtik a fotonok és az elemi részecskék világát.

Matematikai levezetésekkel bemutattuk, hogy a részecskék fénysebességű forgásokkal való értelmezése elvezet egyrészt a speciális relativitáselmélet legfontosabb törvényeihez, másfelől alkalmas arra, hogy kiegészítsük a kvantummechanika Schrödinger egyenletét a relativisztikus korrekciókkal. Az eljárás kiterjeszthető az elektronok mellett a többi elemi fermion tulajdonságainak leírásához is. Az egyes részecskéket az elemi forgások kiralitása alapján jellemezhetjük, bevezetve a harmadik kvantálás királis kvantumszámát.

 Korábbi bejegyzések elérése

 

A mozgás mint a fizikai világ létalapja

Az előző írás: Távolhatások és kontakt kölcsönhatások

Korábbi írások: Linkek

Hétköznapi világunk tapasztalatai a mozgást mindig valamilyen anyaghoz kötik, az anyaghoz pedig súlyt (tömeget) rendelünk hozzá. A mozgás tehát az anyag egyik tulajdonsága. Ez a természetes gondolkodás kiindulópontja. De mennyire helyes ezt a gondolkodást kivetíteni a mikrovilágra, amit a legapróbb fizikai objektumok alkotnak? Oda érzékszerveinkkel nem tudunk bepillantani, az információt különböző műszerek szolgáltatják és minden ismeretünket matematikai formulákba öntött összefüggésekből szerezzük. Mit mondhatunk ebben a világban a mozgás és az anyag viszonyáról, jogos-e a kérdés, hogy mi mozog? A következőkben kipróbálunk egy fordított logikai utat, ahol a mozgás az elsődleges princípium, és az anyag a mozgások speciális formájának megnyilvánulása. Ez a speciális mozgás, amely fénysebességgel megy végbe.

Csak néhány definíciószerű matematikai összefüggés szerepel az írásban, ehelyett inkább a fogalmi láncolatra kerül a hangsúly. Korábbi írásokban lehet a részletesebb matematikai levezetéseket megtalálni.

 Abszolút tér és idő Newton mechanikájában

Newton korszakalkotó munkájában a mozgást az abszolút tér és idő fogalmára vezette vissza, amelynek koordinátáival definiálta a sebességet és a gyorsulást mint a test s pozíciójának az idő szerinti első és második deriváltját:

Sebesség: v = ds/dt

Gyorsulás: a = d2s/dt2

(Kövér betű jelöli a vektorokat.) A gyorsulás alapvetőbb fogalom, mint a sebesség, mert a sebességet mindig valamihez képest adjuk meg, míg a gyorsulás számításánál a sebesség viszonyítási alapja nem játszik szerepet. Newton bevezette az erő fogalmát is mint a mozgások okát, és kapcsolatba hozta a gyorsulással, melynek arányossági tényezője az m tehetetlen tömeg:

F = m·a

A newtoni képben a tömeg a testet jellemző és változatlan alaptulajdonság, melynek szorzata a sebességgel a test impulzusa.

p = m·v

Az impulzus szintén koordinátaválasztástól függő mennyiség, viszont időszerinti deriváltja már nem függ ettől, és azonos az erővel:

F = dp/dt

Az erőtörvénynek ez az alakja egyesíti a három Newton törvényt, sőt a nyugalmi tömeggel nem rendelkező fotonok mozgására is alkalmazható: a foton bár közvetíti az elektromágneses kölcsönhatást, de rá nem hat közvetlenül az erő, ezért impulzusa, azaz sebessége nem változik. A newtoni erőtörvény integrális alakja az energiamegmaradás, mely szerint a potenciális és mozgási energiák összege a mozgás során állandó:

Ekin + V = ½mv2 + V = állandó

Ebből a newtoni erőtörvény a térkoordinátákkal képzett deriválással származtatható, melyben definíció szerint F = ―gradV. A kinetikus energia sebesség négyzetétől való függése, azaz Ekin = ½mv2, voltaképp a newtoni mozgástörvény következménye.

Elemi mozgások és a relativitáselmélet

Ettől a newtoni képtől kell elszakadni, ha el akarunk jutni a relativitáselmélethez. Ennek alapja, hogy minden távolhatás sebessége véges és független a koordinátarendszer választásától, ez pedig a c fénysebesség. A továbbiakban úgy értelmezzük c-ét, mint az elemi objektumokat (részecskéket) alkotó mozgások univerzális tulajdonságát, amely azonos valamennyi objektum esetén. Az elemi részecskék fogalma helyett elemi mozgásokról fogunk beszélni. A részecskefizika Standard Modelljében szereplő valamennyi részecskéhez – legyen szó akár fermionokról, vagy a kölcsönhatásokat közvetítő bozonokról – hozzárendelünk valamilyen c sebességű mozgáskombinációt. Ebben a felfogásban nem valamilyen előzetesen bevezetetett fizikai objektum tulajdonságáról beszélünk, például nem azt mondjuk, hogy a foton vákuumban fénysebességgel terjed, hanem azt, hogy a fénysebességű mozgások egyik megnyilvánulása a fény, illetve annak kvantuma a foton. A mozgásokat két típusba soroljuk, az elemi mozgásokat, amit belső mozgásnak is nevezhetünk, élesen szétválasztjuk a külső mozgásoktól. A c sebességű mozgás kizárólagosan részecske alkotó tulajdonság, vagyis a tömeggel rendelkező fizikai objektumok közötti sebesség nem érheti el c-ét, azt csak aszimptotikusan megközelítheti. Ez összhangban van a Minkowski féle négydimenziós téridő fogalmával, melyben a tér és idő koordinátákat a c sebesség összeköti a Lorentz transzformáció révén.  

Az elemi mozgás másik alapvető tulajdonsága az önmagába való periodikus visszatérés, ez alapján jellemezzük az oszthatatlan elemi részecskék világát, melyben minden elemi fizikai objektum egy-egy elemi mozgásforma. Az önmagába való visszatérés jellemzője a sajátfrekvencia, az idő skálázója. Az elemi mozgásformák nem függetlenek egymástól, erőt gyakorolnak egymásra, megváltoztatják egymáshoz viszonyított sebességüket, azaz gyorsulást hoznak létre. A gyorsulás mértéke pedig attól függ, hogy mekkora az elemi forgások sajátfrekvenciája. Minél nagyobb ez a frekvencia, annál jobban visszafogja a gyorsulást, ez a mozgásváltozást akadályozó képesség a tehetetlenség, vagyis a tömeg. Viszont ez a tömeg nem független a választott viszonyítási rendszertől, amelyben meghatározzuk az objektum sebességét, a mozdulatlannak tekintett elemi objektum nyugalmi tömegét definiálja az f sajátfrekvencia:

m0 = (h/c2)

A h/c2 arányossági tényezőben szereplő h Planck állandó c mellett az elemi mozgás másik alapvető állandója. Miként c az időt és teret kapcsolja össze, akként h az idő (frekvencia) és tömeg kapcsolási állandója.

Fermion: a fénysebességű kettős forgás

Az elemi mozgás önmagába való visszatérésének egyik módja a kettős forgás, vagy más néven gömbforgás, amikor a mozgás a tér minden irányát bejárja, a másik elemi mozgás a körforgás, amikor egy sík minden irányán halad végig a mozgás. Ezekben a mozgásokban az elemi jelleg abban nyilvánul meg, hogy a felületi, illetve kerületi sebesség mindig c bármekkora is a forgási frekvencia. A c felületi sebességhez viszont véges RF sugár tartozik:

c = 4πRF·f, azaz RF = c/4πf

Itt azért szerepel 4π és nem a kör kerületének és sugarának arányát megadó 2π, mert nem egyetlen tengely körüli forgásról, hanem kettős, azaz gömbforgásról van szó, amely befutja a gömb 4R2π felületét. A 4π faktor úgy is értelmezhető, hogy a kettős forgásnál a mozgás két kört fut be. Az m0 tömeg c sebességű elemi mozgásához p0 impulzushosszat rendelhetünk:

p0 = m0c

Ez a sajátimpulzus bejárja a gömb felületét és iránya merőleges a sugárra, így a kettősforgáshoz rendelhető impulzusnyomaték:

J0 = p0RF = (f·h /c2)c(c/4πf) = h/4π = ½ ħ

Itt ħ a h/2π redukált Planck állandó. A kettősforgással definiált részecskéknek – összefoglaló néven fermionoknak – azonos az impulzusnyomatéka, amit annak együtthatójával, az S = ½ spinnel jelölünk.

A fény is anyag

A relativitáselmélet alaptörvénye szerint a tömeg és az energia ekvivalens:

E0 = m0c2 = p0c

Ezt a nyugalmi tömeggel ekvivalens energiát nevezik nyugalmi energiának, noha ez a lehető legnagyobb sebességű forgás hozadéka, vagyis a fénysebességű elemi forgás kinetikus energiája, amit a fenti összefüggésben a sajátforgás impulzusával is kapcsolatba hoztunk. Viszont a fény is anyag, bár nem tartozik hozzá nyugalmi tömeg. Vagyis a tömeg nem szükségszerű velejárója az anyagnak. Az anyaghoz viszont mindig tartozik impulzus. Az energia és impulzus közötti arányosság zérus nyugalmi tömegű fotonok esetén is fennáll, vagyis az általános ekvivalencia törvényt az impulzus és energia arányossága fejezi ki a fénysebességen keresztül.

Kovariancia elv: a külső és belső mozgások összekapcsolása

Az elemi részecskék helyzetének változását a fizikai objektumok egymáshoz képesti távolságával jellemezhetjük, amit leírhatunk egy választott koordinátarendszer bevezetésével. A newtoni leírásban ennek alapja az abszolút tér, viszont a relativitáselmélet ránk bízza a választást, avval a kikötéssel, hogy csak a sebességet érinti választásunk, de a gyorsulás már ettől független legyen. Ezt nevezzük inercia rendszernek, amely annak köszönheti nevét, hogy ekkor a referencia rendszer nem hoz létre tehetetlenségi erőt. Az inercia rendszerben meghatározott v sebesség a nyugalmi értéknél nagyobb tömeget eredményez, vagyis a test külső pk = m·v impulzusa gyorsabban növekszik, mint a sebesség. Ehhez a külső impulzushoz adódik hozzá a kettősforgás p0 belső sajátimpulzusa:

p = pk + p0

Az eredő impulzusvektor hosszúságát a

p2 = pk2 +2pkp0 + p02

összefüggés adja meg, ahol a körforgásokra átlagolva a két vektor szorzata eltűnik, hiszen a p0 vektor minden irányt egyenlő gyakorisággal vesz fel. A pk = m·v és az E = p·c összefüggéseket alapul véve és szorozva c2-tel, kapjuk meg a relativisztikus kinetikus energiát, ami voltaképpen a relativitáselmélet energia törvénye, a nevezetes kovariancia elv:

Ekin2 = pk2c2 + m02c4

Ez a gondolatmenet mutatja, hogy a relativitáselmélet voltaképpen a részecskék sajátmozgásából és külső mozgásából származó impulzusok összeadási szabályából következik, vagyis a relativitáselmélet a fénysebességű forgások koncepciójából származtatható.

- - - - - - - - - - 

Megjegyzés: A kovariancia elv kvantummechanikai operátorokkal való átírásával, mely szerint:

eljuthatunk a tér és időkoordinátákra vonatkozó kovarianciához is:

- - - - - - - - - -

Fontos hangsúlyozni, hogy ez a relativisztikus kinetikus energia négyzetesen összeadott tagokból tevődik össze, amely a klasszikus ½ mv2 = p2/2m definíció általánosítása, mert abban az esetben ha v << c, a kovariancia elv visszaadja a klasszikus kinetikus energia képletét. A kovariancia elvből következik a tömeg sebességfüggésének szabálya is. Átrendezve az összefüggést:

m2c4 = m2v2c2 + m02c4

kapjuk, hogy

A vc határesetben a tömegnövekedés végtelenhez tart, vagyis a külső mozgás v sebessége nem érheti el a c fénysebességet. Ez visszaigazolja a korábbi posztulátumot, mely szerint a részecskék közötti sebesség nem érheti el a részecskét alkotó elemi mozgás c sebességét. A tömegnövekedés fenti szingularitása alapozza meg azt a lehetőséget, hogy a fénysebességű forgások tömeget hozzanak létre. Anyagmentes térben a tömeg természetesen nulla, de ezt a nullát mint határértéket kell értelmezni, melyet szorozva a végtelenhez tartó növekedési faktorral a szorzat véges értéket adhat. (Matematikailag, ha X végtelenhez tart, akkor 1/X határértékben nulla, viszont bármely X érték mellett (1/X)·X = 1). Másképpen fogalmazva, a térnek ugyan nincsen tömege, de ha léteznek benne c sebességű forgások, akkor az elemi mozgások térbeli pozíciójának gyorsításához a sajátfrekvenciával arányos erőre van szükség. A tömegn9vekedést jellemző γ faktor jelenik meg a Lorentz kontrakcióban is, amely a mozgás irányában való hosszúság csökkenését írja le, és nullára csökkenti a hosszúságot, amikor a sebesség eléri c-t. γ definíciója is összhangban van avval a posztulátummal, hogy a v sebesség nem lehet nagyobb, mint c.

Tehetetlenségi erők gyorsuló rendszerekben

A gyorsuló rendszerekben lévő tömeg tehetetlenségi erőt idéz elő. Ilyen gyorsuló rendszer a körmozgás is, amelyben fellép a sugár irányban kifelé ható centrifugális erő. Amikor tehát a fénysebességű forgás létrehozza a tömeget, az akkor lesz stabilis képződmény, ha létezik egy olyan erő, amely a centrifugális erőt kiegyenlíti. Ezt az erőt az általános relativitáselmélet szellemében a tér görbülete hozza létre. A körforgások miatti görbületet a kerület és a sugár arányával jellemezhetjük, amely kisebb lesz, mint 2π, a γ faktorral megadott Lorentz kontrakció miatt. Ha a tér a tömeg körül a Kepler törvénynek megfelelő frekvenciával és sebességgel forog, akkor a Lorentz kontrakció által kiváltott térgörbület létrehozza a Newton féle gravitációt. Evvel megfordítjuk a szokásos logikai utat, amikor a keringést a gravitációval magyarázzuk, mert ebben a felfogásban a forgás az elsődleges, ami kiváltja a gravitációt. Az Einstein által megfogalmazott posztulátumban a tömeg görbületet hoz létre maga körül a térben, de nincs magyarázat arra, hogy ez miért következik be. Ezt a posztulátumot egészítjük ki avval, hogy a tömeget alkotó fénysebességű forgás kilép az RF sugáron túlra, ahol frekvenciája lelassul a Kepler törvénynek megfelelően (A kerületi sebesség négyzete a sugár növekedésével csökken). Más szóval a belső sajátforgás külső forgást is indukál. Vagyis az általános relativitás alapfeltevését, mely szerint a tehetetlen és a gravitáló tömeg azonos, arra vezetjük vissza, hogy mind a tehetetlen tömeget, mind a gravitációt az elemi forgás hozza létre.

A tömegek között ható külső gravitációhoz hasonló módon működik a részecskét stabilizáló erős belső gravitáció, mert a részecskéket alkotó fénysebességű forgásoknál a kerület nullára csökken a sugár változatlansága mellett, amiért extrém nagyságú lesz a görbület. A számítások arra vezetnek, hogy az extrém görbülethez tartozó befelé húzó gravitációs erő ―ħc/R2 lesz, amely éppen kiegyenlíti a ħc/R2 nagyságú centrifugális erőt. Az elemi forgás egyensúlya az energiával is kifejezhető: a ħc/R kinetikus energiát kiegyenlíti a görbült tér negatív ―ħc/R potenciális energiája. Az elemi mozgások létrejöttéhez nem kell külső energia, a részecskék megalakulása a tér lokális szerkezetének átalakulása, amely egyrészt negatív potenciális energiát, másrészt pozitív kinetikus energiát hoz létre. A részecskék az impulzusmomentum (vagyis a spin) révén jöhetnek létre, amelyet egymással szemben forgó elemi mozgások generálhatnak az eredetileg üres térben.

Az elektromos töltés eredete és a foton elemi mozgásformája

A fermionokat alkotó kettős forgás létrehoz egy további tehetetlenségi erőt, nevezetesen a Coriolis erőt, amelynek iránya merőleges egyfelől az egyik forgás tengelyére, másfelől a másik forgás érintőjére, amely így párhuzamos lesz a centrifugális erővel. Az erő nagysága periodikusan változik az érintő körbefutása miatt, azaz egy teljes körre számolva az átlag nulla lesz. Ennek az erőnek amplitúdója ħc/R2. A Coriolis és a centrifugális erők összeadódnak. A Coriolis erő átlaga nulla, de hatására az egyik fél periódusban kifelé mutató erő meghaladja az erős gravitációt, a másik fél periódusban viszont megfordul a helyzet és az erős gravitáció visszahúzó ereje lesz nagyobb. Ennek következménye, hogy fél periódusonként kibocsátásra kerül, majd visszanyelődik egy körforgás. Ez már egytengelyű forgás lesz, amelyet a Coriolis erő a forgási tengely irányában lök meg, és ennek hatására létrejön egy fénysebességgel megnyúló hengeres spirálpálya. Ez az elemi mozgásforma a foton, melynek folytonos kibocsátása és elnyelése megfelel a kvantumelektrodinamika (QED) feltevésének, amely virtuális fotonokkal magyarázza az elektromágneses kölcsönhatást. Ezeknek a fotonoknak impulzusa löki el, vagy húzza egymás felé a fermionokat, létrehozva az elektromos Coulomb erőt, viszont a fotonoknak impulzusnyomatéka is van, melynek forgató hatása vezet a mágneses kölcsönhatáshoz a mozgó objektum retardációs hatása miatt. (A retardáció azt jelenti, hogy a hatás terjedéséhez is idő kell, amiért az egyik objektum korábbi pozíciója határozza meg a másik objektumra gyakorolt erőt).

A kettősforgásban a két körforgás iránya két geometriát képvisel, lehet jobbkéz, vagy balkéz szimmetriájú, ezt nevezzük kiralitásnak. Ennek megfelelően kétféle fermion létezik, az egyik anyag, a másik antianyag típusú részecske. A Coriolis erő iránya ellentétes a két királis szimmetriánál, amiért a két esetben a kibocsátási és visszanyelési periódusok, és evvel együtt a fotonok forgási iránya (polarizációja) is fordított lesz. A fotonok kétféle polarizációja okozza, hogy két fermion között vonzás és taszítás is lehet, az előbbit ellentétes polaritású, az utóbbit azonos polaritású fotonok szuperpozíciója idézi elő. Az erőhatás jellemzésére vezeti be a fizika a töltés fogalmát:

FCoulomb = q1q2/R2

A töltés tehát a részecskékhez rendelt technikai paraméter, amely jól írja le a részecskéket övező és a Coriolis erő által létrehozott foton felhők közötti kölcsönhatást. A töltés az elemi kettősforgások másik jellemzője a tömeg mellett. Ha elemi részecskéről van szó, akkor a q töltés egységesen ugyanakkora értéket vesz fel, amit +e, vagy –e elemi töltésnek nevezünk, ahol az előjel fordított az anyag, illetve antianyag típusú részecskék esetén. Például az elektron töltése negatív, a pozitroné pozitív. Viszont az elemi részecskék töltésének nagysága – eltérően a tömegtől – független az elemi forgás frekvenciájától, ugyanis a Coriolis erő amplitúdója csak a Planck állandótól és a fénysebességtől függ:

 e2/R2 = αħc/R2

Itt az α = 1/137 dimenziómentes Sommerfeld állandó a mozgás harmadik intrinsic konstansa, amely megmutatja, hogy a kettős forgások energiájának hányad része „tárolódik” a fermion foton felhőjében. Az α tényező az elektromágneses kölcsönhatás csatolási állandója.

A nyugalmi tömeg és a töltések kapcsolata

Amikor két ellentétes kiralitású és egymást vonzó elemi forgás – például elektron és pozitron – ütközik, annihiláció következik be. Ennek oka, hogy ilyen esetben már nem a kölcsönhatást közvetítő fotonok szuperpozíciója áll a jelenség mögött, hanem közvetlenül a fermionok elemi forgásai oltják ki egymást. Az ütköző részecskék kettős forgásaiból az egyiknél a forgás irányok ellentétesek, amiért megsemmisítik egymást, viszont a másik forgási iránya egyezik, amiért megmaradnak, és így két valódi (detektálható) foton jön létre a két fermion annihilációja során.

A foton egytengelyű fénysebességű forgása 2Rπ kerületet fut be, amihez a c sebesség miatt Rfoton = c/2πf sugár tartozik. Ekkor a kettős forgáshoz képesti kétszeres sugár miatt a forgás impulzusnyomatéka is megduplázódik, azaz ħ lesz. Ez a részecske típus kapta a bozon elnevezést, amely az S = 1 spinnel jellemezhető.

Fotonok kibocsátása a fermionok állapotváltozásához kapcsolódik. Foton kibocsátás külső erő hatása nélkül, spontán módon is létrejöhet megmaradási elvek teljesülése mellett. Az S = ½ spinű, azaz ½ħ impulzusnyomatékú, fermion úgy bocsáthat ki, vagy nyelhet el S = 1 spinű (ħ impulzusnyomatékú) fotont, ha közben a fermion spin vetülete is ugyanekkorát változik. A spinhez a belső kettősforgáson kívül külső forgást is rendelhetünk. A belső forgás határozza meg a spin nagyságát, míg a külső forgás két vetületi érték közül választhat. A külső forgásra példa a Larmor precesszió, amikor egy külső mágneses mező iránya körül végez forgást a részecske. Ezt az irányt konvencionálisan z-nek nevezzük, és ehhez rendeljük a fermion spin Sz komponensét, amely +½ és -½ értéket vesz fel, attól függően, hogy milyen irányban történik a forgás. Foton kibocsátás, vagy elnyelés a forgásirány megfordításával jön létre, mert ekkor Sz értéke egységnyit változik. (Ez elvben vonatkozik a QED elméletben feltételezett virtuális fotonokra is, tehát a részecske külső forgás iránya is állandóan ide-oda ugrik.) A forgás frekvenciája arányos a mágneses mezővel, ez a Larmor frekvencia, amelynek értéke nem érheti el a sajátforgásét, annál a technikailag megvalósítható mágneses mezőkben sok nagyságrenddel kisebb. Külső forgásnál már indokolt feltenni a kérdést, hogy mi forog. A Larmor precessziót úgy értelmezhetjük, hogy a külső mágneses mező forgatónyomatékot gyakorol a fermiont övező virtuális foton felhőre, és ezáltal a foton felhő forgásba jön. A virtuális foton felhőnek ezt a tulajdonságát írja le a mágneses dipólus.

Atomokban kötött pályán mozgó elektronok is kibocsáthatnak fotont, amit az optikai spektroszkópiában figyelhetünk meg. Ennek forrása az atommag körüli mozgási pálya Lzħ impulzusnyomatéka, ahol az Lz kvantumszám egész értékeket vehet fel. Foton kibocsátás, vagy elnyelés két pálya közötti ugráskor jön létre, amikor az Lz kvantumszám egységnyit változik. Ebben a folyamatban az elektron külső mozgásának impulzusnyomatéka konvertálódik a foton belső forgásából származó impulzusnyomatékba. Ez a konverzió ħ nagyságú kvantumokban történik, ami magyarázatot ad arra, hogy az elektronpálya impulzusnyomatéka miért csak ħ egészszámú többszöröse lehet.

A folytonosság kvantummechanikai követelménye

A fény kvantáltsága és az energiaváltozás kvantumos jellege kötött állapotú részecskék esetén nem jelenti, hogy akár a tér, akár az idő kvantált lenne. Ellenkezőleg, mivel a kvantummechanika differenciálhányadosokkal definiálja az energia és impulzus operátorokat, ez megköveteli, hogy a tér és idő koordinátáknak folytonosak legyenek minden határon túl. Ezért, ha meg akarunk felelni a kvantummechanika kívánalmainak, akkor úgy kell értelmezni az elemi forgásokat, amelyek nem sértik a folytonosság követelményét. A c sebességhez tartozó RF sugarat nem lépheti át az elemi forgás, vagyis ezen a határon a forgási frekvencia hirtelen nullára csökken. A folytonosság kritériuma azonban megköveteli, hogy a forgás leállása ne szakadásként következzen be, hanem egy véges tartományon belül. Korábban, amikor a gravitációt a kettős forgás RF határon való kilépésével magyaráztuk, hallgatólagosan ezt a kvantummechanikai folytonossági elvet követtük. Most a kérdés másik oldalát vesszük szemügyre, ahol a kettős forgás átalakulásáról lesz szó. Úgy fogjuk fel közelítőleg a kettős forgások által kialakított RF sugarú gömböt, hogy annak van egy véges ΔR vastagságú „héja”. A frekvenciaváltozás ütemét a df/dR = fR differenciahányadossal jellemezhetjük, ahol figyelembe vettük, hogy a részecskén kívüli tartományba már nem jut ki a forgás. A héj ΔR vastagságát a fénysebességű mozgás Δt = ΔR/c idő alatt lépheti át. Képezzük evvel az idővel a frekvenciaváltozás differenciálhányadosát:

Ekkor az Euler erő mintájára felírhatjuk a frekvenciacsökkenés miatt fellépő tehetetlenségi erőt:

Itt az Euler erőre hivatkozunk, de valójában annak kiterjesztéséről van szó. Az eredeti Euler erő a forgási frekvencia időbeli fékezése ellen ható tehetetlenségi erő, de ez esetben a frekvencia térbeli (sugár irányú) fékezéséről van szó. Az utolsó formulából látszik, hogy a forgási frekvencia térbeli lassításából származó tehetetlenségi erő nagyobb, mint a sajátforgás centrifugális ereje, illetve a részecskét stabilizáló extrém gravitáció, hiszen az RF forgási sugarat nem haladhatja meg a héj ΔR szélessége.

A gyenge kölcsönhatás világa

Ez a rendkívül nagy erő magyarázza a részecskefizika különös jelenségét, mely szerint bétabomláskor a fermionok (például a neutron) saját tömegét közel százszor meghaladó tömegű W részecskét hoz létre. Mint korábban említettük a szükséges energiát a görbület potenciálisenergiája és a sajátforgások kinetikus energiájának egyensúlya biztosítja. Ez az erő érintő irányban fut körbe, vagyis létrehoz egy fénysebességű egytengelyű forgást. Ez a forgás a fotontól eltérően nem terjed a tengely irányában fénysebességgel, hanem a forgás sugara tágul, vagyis egy síkban táguló spirális jön létre. A fénysebességű forgás játékszabálya szerint ez a tágulás lelassítja a forgási frekvenciát. Ez a mozgástípus alkotja a nagytömegű és töltéssel rendelkező W bozont. Mivel a sugárirányú tágulás merőleges a forgási tengelyre, így fellép a Coriolis erő, vagyis ennek a bozonnak van töltése is. Továbbá a W bozon nem hagyja el a fermion felületét, vagyis lokalizált, így tömeget is rendelhető hozzá. Összegezve: a W bozon és a foton közös tulajdonsága, hogy mindkettőt egytengelyű forgás alkotja, de amíg a fotonnak nincs nyugalmi tömege és a forgási frekvencia tetszőleges lehet, addig a különböző fermionok által kibocsátott W bozonnak van töltése és óriási nagy tömeggel rendelkezik. Miért azonos a W bozon tömege bármilyen részecske is bocsátja ki? Ennek okát a tér további határtulajdonságára lehet visszavezetni. Minthogy a W bozonnak van tömege, amihez centrifugális erő járul, ezt a lokális térgörbülettől származó extrém erős gravitációnak kell kiegyenlíteni. De a nagy tömeghez rendkívül kis RW = ħ/mWc sugár tartozik, viszont a sugárnak létezik egy alsó határa, amely behatárolja, hogy mekkora lehet az a maximális tömeg, amelyet a térgörbület még stabilizálni képes. A W bozon képződését nem külső erő okozza, hanem a fermion felületén működő belső erő, amely nem tűnhet el a fermion átalakulásánál, hanem átmegy a képződő W bozont stabilizáló erőbe:

 

Ez pedig meghatározza, hogy mekkora az a héjvastagság, amely képes létrehozni az ismert tömegű W bozont:

RF ΔR = RW2

Mivel a gömb sugarát nem haladhatja meg héjának vastagsága, azaz ΔR < RF, így RF > RW , vagyis a fermionok sugárral fordítottan arányos tömege nem lehet nagyobb, mint a W bozon tömege. Ez egyezésben van avval a részecskefizikai ténnyel, hogy nem lehet megfigyelni olyan fermiont, amelynek tömege meghaladná a W bozonét. Evvel magyarázatot kaptunk arra is, hogy miért nem találtak olyan hadront, amelyben a top kvark is jelen lenne, ugyanis a top kvarkra megállapított renormált tömeg már nagyobbnak adódott, mint a W bozoné.

A W bozont alkotó belső mozgás sugara fénysebességgel növekszik. A kerületi sebesség c értéke miatt a növekvő sugár a frekvencia lassulásával valósul meg, ami a frekvenciával arányos tömeg elvesztését hozza magával rendkívül rövid idő alatt. A W bozont csökkenő frekvenciája teszi alkalmassá, hogy különböző tömegű fermionokat alakítson át, amikor rezonanciába kerül velük. A gyenge kölcsönhatás hatótávolsága rendkívül rövid a W bozon gyors leépülése miatt. Mivel a W bozon forgási tengelye és terjedési iránya merőleges egymásra, ehhez a mozgásformához Coriolis erő, tehát töltés is tartozik, voltaképp a fermion saját töltése „ruházódik át” a kilépő W bozonra, vagyis a fermion elveszti töltését és semleges lesz. Ez a töltésmegmaradás elv folyománya, amit a Coriolis erő megmaradási elveként is értelmezhetünk. A fermionok tehát két folyamatban vesznek részt, egyrészt kibocsáthatnak egy fénysebességgel terjedő és nullatömegű részecskét, a fotont, másrészt létrehozhatnak egy töltéssel és tömeggel rendelkező W bozont, egy semleges fermionnal, a neutrínóval együtt. Ez a neutrínó hasonlít a fotonra, nincs tömege, nincs töltése, van viszont impulzusa és a mérések szerint fénysebességgel mozog, abban azonban különbözik a neutrínó a fotontól, hogy spinje S = ½, és nem vesz részt elektromágneses kölcsönhatásban. A töltéssemlegességet olyan elemi forgással értelmezhetjük, amely egyidejűleg végez jobb és balkéz szimmetriájú kettős forgásokat, ez vezet a Coriolis erő eltűnéséhez. A tömeg eltűnését úgy értelmezhetjük, hogy az anyaghoz pozitív, az antianyaghoz negatív tömeget rendelünk, és összegük nulla lesz, ha a két királis mozgás együtt van jelen. Mivel a kovariancia elvben kizárólag négyzetes tagok fordulnak elő, így nincs a tömeg előjelének szerepe a relativisztikus mozgástörvényben, a gravitáció szempontjából sincs szerepe az előjelnek, mert a térgörbületet nem függ tőle. A negatív tömeg azonban a klasszikus Newton törvényben az erővel fordított irányú gyorsulást idézne elő, ilyen mozgás viszont nem létezik. Valójában arról van szó, hogy a relativisztikus mozgásegyenlet négyzetes tagokból álló összefüggés, emiatt annak kis sebességre érvényes alakja is négyzetes, vagyis a Newton egyenletet is négyzetre kell emelni, ahol a tömeg előjele már nem játszik szerepet. Úgyszintén a kovariancia elvből következő tömeg-energia ekvivalencia törvényt is négyzetes alakban kell átírni: E2 = m2c4. A tömeg előjele egyedül az annihiláció esetén játszik szerepet, amikor eltűnik a tömeg két foton képződése során. Az annihilációval ellentétes folyamat a párképződés, amikor az elegendően nagy energiájú gamma sugarak elektron-pozitron párt produkálnak.(Ez a Breit-Wheeler folyamat, amelyben két gammasugár hozhat létre elektron-pozitron párt. Ennek kísérleti megfigyelését újabban nehéz ionok felgyorsításával sikerült elérni, ahol a nehéz ionok nagy mennyiségű virtuális fotont hoznak létre.)  Az elegendő energia azt jelenti, hogy a foton frekvenciájának legalább akkorának kell lenni, mint a képződő fermion pár saját frekvenciája. Ekkor a zérus nyugalmi tömegű fotonok hozzák létre a pozitív és negatív előjelű tömeget. A tömegmegmaradás törvényét az ellentétes előjelek biztosítják a párképződésben.

A tömeg előjele tehát együtt változik a töltéssel, kiterjesztve a részecskék tömege és töltése közötti szimmetriát. Megfogalmazhatjuk azt a szabályt, hogy ha egy elemi részecskének van töltése, akkor van tömege is, ha nincs töltés, akkor nincs tömeg sem. Természetesen ez a szabály csak a valódi elemi részecskékre vonatkozik, és nem az összetettekre. Ha több elemi objektum, például kvark, létrehoz egy összetett objektumot, ott a töltések semlegesíthetik egymást, szemben az összeadódó tömegekkel. Látszólag ellentmond az előbbi szabálynak, hogy létezik a gyenge kölcsönhatást közvetítő semleges Z bozon is, amelynek nincs töltése, de tömege meghaladja még a W bozonét is. Ez azonban csak látszólagos ellentmondás, a Z bozon tömegét impulzusmérésből, azaz meglökött elektronok kinetikus energiájából határozzák meg, és nincs szó közvetlen tömegmérésről. A Z bozon elemi mozgása két ellentétes kiralitású mozgás szuperpozíciója, ezért a részecskének tulajdonított mZ tömeg a pZ = mZ·c impulzusból leszármaztatott mennyiség.

Neutrínók típusai és szerepük a gyenge kölcsönhatás közvetítésében

A neutrínók is betölthetnek kölcsönhatást közvetítő szerepet. A csillagokból érkező neutrínó, ami egy neutron átalakulásából származik, eljuthat a Földre, ahol egy fermiont, például egy protont, átalakíthat. Ez azt jelenti, hogy a neutrínó két távoli fermion között hozhat létre kölcsönhatást, azaz a kölcsönhatások közvetítése nem a bozonok kiváltsága. Természetesen a neutrínó sohasem „egyedül dolgozik”, mind képződésekor, mind eltűnésekor szükség van a W bozon megjelenésére is.

Hány féle neutrínó van? A Standard Modell háromféle neutrínót különböztet meg, amit elektron, műon és tau neutrínónak nevez. Ennek oka, hogy az elektronnak létezik még két nagyobb tömegű változata, a müon és a tau részecske. Ezek a részecskék nem stabilak, a tau két neutrínó és a W- bozon közvetítésével müonra, a müon hasonló módon elektronra bomlik fel. A folyamat során fellépő neutrínók tartoznak az elektronhoz, müonhoz és a tau részecskéhez. De miért éppen ezek a neutrínók szerepelnének például a neutron, vagy a pi mezon bomlása esetén? További kérdőjelet vet fel a neutrínó oszcilláció kérdése. A Napból és csillagokból érkező neutrínók várt számánál jóval kevesebbet lehetett a földön detektálni, amit úgy értelmeztek, hogy az utazás során a különböző tömegű neutrínók egymásba alakulnak (oszcillálnak) és a detektor ezek közül csak az egyik típust érzékeli. Viszont a neutrínók sebességmérése a hibahatáron belül mindig a c fénysebességgel egyező értéket adott, vagyis a neutrínóknak nem lehet tömege. Ezt úgy értelmezi a jelenlegi modell, hogy mégis van tömegük, csak a sebességmérés pontossági korlátja miatt ez nem határozható meg. Ennél lényegesen kézenfekvőbb magyarázatot kínál a fénysebességű forgások koncepciója, amely a neutrínókhoz – hasonlóan a fotonokhoz – nem rendel tömeget, csupán impulzust, vagyis a neutrínók nem tömegükben különböznek, hanem az impulzus nagyságában. Arra sincs szükség, hogy éppen három diszkrét impulzusú neutrínót különböztessünk meg: úgyszintén a foton mintájára különböző impulzusú neutrínók jöhetnek létre az egyes bomlási és átalakulási folyamatokban az átalakuló fermionok tömegétől függően.

Az elmondottakat úgy is összefoglalhatjuk, hogy a fénysebességű forgás anyagképző mozgás. Az anyagképződés azonban nem okvetlenül tömeg, illetve töltésképző folyamat. Tömegképződésről van szó, amikor töltött objektumok (elektron, pozitron, W bozon) jönnek létre, ezek tiszta királis állapotok, míg impulzusképződésről beszélhetünk, ha semleges objektumok (foton, neutrínó, Z bozon) jönnek létre. Ezek királisan semleges elemi mozgásformák, rájuk nem is vonatkozik az anyag és antianyag megkülönb9ztetés. Léteznek azonban kevert királis mozgásformák is (kvarkok, gluonok), ahol törttöltések alakulnak ki és a szokásos tömeg helyett csak renormált tömegről beszélhetünk. Erről lesz szó a következő pontban.

Kvarkok és gluonok: a „Cukahara” szaltó

Szertornában alkalmazott egyik elem a Cukahara szaltó, amivel szemléltethetjük a kvarkok mozgásformáit. Ekkor a tornász a szaltót és a forgást kombinálja. Hasonló gyakorlatokat mutatnak be a toronyugrók is. Egy duplaszaltót lehet kombinálni egy forgással, vagy a szaltót összekötni egy duplaforgással. Az eddig tárgyalt fermionoknál, az elektron és a pozitron esetén két egyszerű síkforgás kapcsolódik össze, melyekhez bal, vagy jobbkéz szimmetria párosul. Ezek a tiszta királis állapotok. Kvarkok esetén is két forgás kombinálódik, de ezek összetett formák, akár az említett Cukahara figurák. Az egyes forgások három szakaszra bomlanak, amelyek kevert királis állapotokat hoznak létre, például két balkéz állapot kombinálódik egy jobbkéz állapottal, létrehozva 2/3e töltést a részleges Coriolis erők miatt, ezt nevezzük „up” részecskének, vagy fordítva két jobbos kiralitású részforgás kapcsolódhat egy baloshoz, amikor -1/3e töltés alakul ki, ez a „down” kvarkot határozza meg. Törttöltésű elemi objektumot azonban nem lehet megfigyelni, ezt fogalmazza meg a bezártság elv. Ez a mozgásforma önmagát nem stabilizálja, ehhez két vagy három kvark „összefogására” van szükség, az ilyen összetett objektumokat nevezzük mezonoknak és barionoknak. Legismertebb képviselőik a +e töltésű proton, amely két up kvarkból és egy down kvarkból áll, és a semleges neutron, amit egy up és két down kvark alkot.

Ezt az összetett mozgásformát két tehetetlenségi erő hozza létre, a már említett Coriolis erő, amely sugárirányú, és az érintő irányú Euler erő. A két erő eltérő irányultsága szükséges a „szaltók” és „forgások” kombinálásához. Minden kvarknak három állapota van, amit színnek nevez a részecskefizika, és tulajdonságait a kromodinamika mezőelmélete foglalja össze. A három ekvivalens állapotra kézenfekvő magyarázatot ad a fénysebességű mozgás elve: az egyes forgási tengelyek lehetnek x, y és z irányúak. A három tengelyiránnyal jellemzett kvarkokat 3x3 gluon kapcsolja össze, amiből a totálszimmetrikus kombinációt kizárja az elmélet, amiért 8 különböző gluonról beszél. Mivel szabad kvark nem figyelhető meg, így törttöltésük nem valódi, hanem kalkulált érték, és tömegük sem mérhető, amiért renormált tömegeket rendelnek az egyes kvarkokhoz. A kvarkoknak is három generációja van az elektron, müon, tau hármas mintájára. A magasabb generációhoz nagyobb tömeg, azaz forgási frekvencia tartozik. A kevert kiralitású fermionok olyan részecskéket hoznak létre, amelyek már vagy tiszta királis állapotúak, vagy semlegesek. Az egyes kvarkok renormált tömegének is adhatunk előjelet, pozitívot az anyagnak és negatívot az antianyagnak. Emiatt a semleges neutronnak is két típusa van, a pozitív tömegű neutron és a negatív tömegű antineutron, amelyek ütközéskor annihilálnak.

Még egyszer a gravitációról

Végül térjünk még vissza a gravitációra, hogy ezt is a belső forgások tehetetlenségi erejére vezessük vissza. Az Euler erőnek létezik egy másodlagos hatása is, amikor a fermion belsejéből mindkét forgást kilépteti. Ez a kiléptetés úgy fogható fel, hogy nem áll le teljesen a kettős forgás a részecske határán, hanem erősen lelassult frekvenciával fennmarad. Ez mint egy másodlagos felhő veszi körül a fermionokat. Ehhez sem tömeg, sem impulzusnyomaték (spin) nem tartozik, és így ez a kölcsönhatás nem rendelkezik kvantumos jelleggel. Hatása abban nyilvánul meg, hogy a fermion körüli tér is görbülettel rendelkezik. Ez hozza létre a részecskék közötti gravitációs vonzást. A relativitáselmélet szerint a tömeget körülvevő gravitációs mező, azaz a görbület is fénysebességgel terjed, amiért retardációs hatás az elektromágnesességhez hasonlóan itt is fellép. Ezt írja fel az Einstein által megadott gravitációs egyenlet, amelyben a térszerkezetét leíró görbületi tenzor foglalja magába a retardációs hatást, és ennek következménye a LIGO kísérletekben megfigyelt gravitációs hullámok kialakulása.

Foglaljuk össze a fentieket! Az elemi mozgások anyagképző potenciállal rendelkeznek, melyek különböző tehetetlenségi erőkhöz vezetnek (centrifugális, Coriolis és Euler). Ez egységes keretet biztosít a négy alapvető fizikai erő: a gravitáció, az elektromágneses, a gyenge és az erős kölcsönhatás értelmezéséhez.

EPILOGUS

Létezik egy teremtés előtti világ, ahová még műszereinkkel sem tudunk bepillantani. Ebben alakulnak ki az elemi mozgásformák, amelyek megteremtik az anyagot, viszont minden, amit látunk, minden, amit érzékelünk, vagy amit műszereinkkel megfigyelünk, már erre a teremtett világra vonatkozik. Ez határozza meg gondolkodásunk kereteit, ez építi fel a józan ész kapaszkodóit. Elfogadni és elsajátítani egy másfajta gondolkodást, ami a teremtés előtti világról szól, roppant nehéz, óriási szellemi kihívást jelent. Írásom ebben az irányban tett próbálkozás.

 

Távolhatások és kontakt kölcsönhatások

Az előző írás: A fénysebesség csökkenés mechanizmusa és a kvantum fluktuáció

Linkek a korábbi bejegyzésekhez

 

Távolhatások és kontakt kölcsönhatások

A Föld és a többi bolygó a Nap körül kering, a pályát a távoli égitestek közötti láthatatlan gravitációs erő hozza létre. Nincsenek a testek összekötve, ezért közöttük távolhatásról beszélhetünk. Az atommag körüli pályákon elektronok mozognak, ennek létrehozója a pozitív töltésű atommag és a negatív elektronok közötti elektromos vonzóerő. Bár itt a távolságok parányiak, mégis távolhatásról beszélhetünk, mert nincs látható kapocs a részecskék között. Ez a távolhatási kép volt uralkodó, amikor kialakult a kvantummechanika, és magyarázatot adott az atomok és molekulák szerkezetére. Később születtek meg a mezőelméletek, elsőként a kvantumelektrodinamika, amely alapvető változást hozott a fizikai szemléletben, előtérbe került a koncepció, hogy a távolhatás mögött kontakt mechanizmusok állnak, melyekben virtuális fotonok hozzák létre az elektromágneses vonzó és taszító erőt. A virtualitás azt jelenti, hogy ezek a fotonok közvetlenül nem figyelhetők meg.

Megfigyelhető és virtuális fotonok, a vákuum fluktuáció

A fény természetére először a Maxwell egyenletek megszületése adott magyarázatot, vákuumban is áramlanak elektromágneses hullámok, melyek képesek erőt gyakorolni, ha oda elektromos töltést helyezünk. Planck felismerése volt, hogy a fény is egyedi objektumokból áll, a fotonokból. A foton olyan fénysebességgel (c), haladó hullám, amelynek minden periódusára ugyanakkora lökő erő tartozik, és minden periódusának ugyanakkora az energiája, ezt fejezi ki, hogy a teljes hullám impulzusa a távolság egységre jutó hullámszám (p = h/λ), és energiája az időegységre jutó periódusok száma: E = hf. Itt h a Planck állandó, a téridő univerzális tulajdonsága a c fénysebesség mellett, ez a kvantum egysége is, amit gyakran a ħ = h/2π redukált Planck állandóval is jelölünk. A foton voltaképp két töltés kölcsönhatása a térben. Valahol a térben egy elektron állapota megváltozik, például a lámpa izzószálában, vagy a Napban, ezáltal útjára indít egy fotont, amely eljut valahol egy másik elektronokhoz, legyen az akár közel, de lehet fényévnyi távolságra is. Az „utazó” foton hatására megváltozik ennek a másik elektronnak az állapota. Ezen az állapotváltozáson alapul minden megfigyelés és a látásunk is.

E történet idáig a megfigyelhető valódi fotonokról szólt. A virtuális fotonoknak más a szerepük, nem az elektronok állapotát változtatják meg, hanem fenntartják, létrehozzák a töltések között ható erőt. Ennek eszköze a fotonok impulzusa, amely meglöki a töltéssel rendelkező részecskéket, így az elektronokat is. Minden töltéssel rendelkező elemi objektum, legyen szó elektronokról, vagy az atommagok protonjairól, állandóan kibocsát és elnyel virtuális fotonokat. A mechanizmusra szemléletes magyarázatot kínál a fénysebességű forgások koncepciója, melyben kettősforgások alkotják a részecskéket, összefoglaló néven a fermionokat. A részecske sajátforgásának centrifugális erejét a fénysebességű forgás által előidézett extrém térgörbület gravitációs ereje egyenlíti ki. Ez a magyarázat az általános relativitáselméletre támaszkodik. A két forgás között fellép egy további tehetetlenségi erő, a periodikusan változó Coriolis erő, amelynek átlaga nulla. Ennek az erőnek körüljárási irányát a két forgás királis szimmetriája szabja meg. A Coriolis erő periodikusan megtöri a forgást fenntartó erőegyensúlyt, a periódus egyik fázisában a kifelé ható erő lesz nagyobb, ekkor kerül sor az egytengelyű forgás, azaz a foton kibocsátására. A periódus másik felében a befelé húzó erő lesz a domináns, ekkor nyeli vissza a részecske a virtuális fotonokat. Kibocsátáskor a foton impulzusát az elektron biztosítja, amely ekkor a fotonéval ellentétes irányban lökődik meg, ezáltal téve eleget az impulzus megmaradásának. Elnyeléskor az elektron visszaveszi az impulzust, azaz fordított irányú elmozdulás következik be. A két folyamat összjátéka állandó fluktuációt okoz az elektron pozíciójában. Ezt nevezi a szakirodalom vákuum, vagy kvantumfluktuációnak, és ennek segítségével lehet magyarázni, hogy miért nagyobb az elektron mágneses nyomatéka, mint ami a relativisztikus Dirac egyenletből következik.

Vonzás, taszítás és a fotonok polaritása

De miért jön létre taszító erő két elektron között, és miért vonzás a pozitív töltésű atommag és a negatív elektronok között? A virtuális fotonok kibocsátása és elnyelése dinamikus egyensúlyt hoz létre, amit úgy foghatunk fel, hogy a részecskét kiegészíti egy virtuális foton felhő, amely létrehozza az elektromágneses kölcsönhatást. Ez a felhő képviseli az elektron mc2 energiájának egy kis hányadát, amit. a Sommerfeld féle α = 1/137 állandó mond meg, a szakirodalomban ezt nevezik finom-kölcsönhatási állandónak. Ez határozza meg az elemi töltés nagyságát is az e2 = αħc összefüggésben (e a töltés). A töltés előjelét viszont az határozza meg, hogy milyen a kettősforgás kiralitása, ami: jobb, vagy a balkéz szimmetriájú lehet. Például negatív töltéshez rendelhetjük a jobbkéz, a pozitívhoz a balkéz szimmetriát. Persze a választás önkényes, lehet fordítva is. A jobbkéz szimmetria esetén jobbsodrású, balkéz szimmetriánál balsodrásúak lesznek a kibocsátott fotonok a Coriolis erőnek megfelelően. Amikor két elektron kölcsönhatásba kerül mindkettő jobbsodrású fotonokkal van körülvéve, de mivel a másik elektrontól érkező fotonok terjedési iránya az elsőhöz képest fordított, a kölcsönhatás létrejöttekor a „befogadó” elektron oldaláról nézve megfordul a forgás sodrásiránya, azaz balsodrású lesz. A virtuális fotonok szuperponálódnak az átfedési tartományban, és az ellentétes polaritások kioltják egymást. Emiatt a két elektron közötti tartományban lecsökken az elnyelhető fotonok sűrűsége. A kibocsátás és elnyelés egyensúlya megbomlik, hiszen a foton kibocsátások gyakorisága változatlan marad, amiért összességében a taszító hatás fog dominálni, vagyis taszítják egymást az elektronok. Megfordul a kép a negatív és pozitív töltések kölcsönhatásakor. Ekkor a pozitív töltésű részecske balsodrású foton felhője a negatív töltés számára jobbsodrásúként viselkedik. Ez a két részecske közötti tartományban megnöveli a foton sűrűséget, amiért nagyobb lesz az elnyelések sebessége a kibocsátáshoz képest. Ez pedig már vonzást hoz létre a felborított impulzus mérleg miatt.

 A foton felhők sűrűsége a távolság négyzetével csökken, emiatt a vonzó, vagy taszító erő is ebben az ütemben változik, ami megfelel a Coulomb törvénynek, amely szerint FCoulomb = q1q2/r2, ahol r a q1 és q2 töltések távolsága. A q1 töltés erőkifejtési képességét leírhatjuk az E1 = q1/r2 elektromos mező fogalmának bevezetésével is, amikor is FCoulomb = E1q2.

Mágneses mező: a Coulomb kölcsönhatást kiegészítő retardációs hatás

Mozgó töltések esetén az erőhatás megváltozik, mert idő kell a virtuális fotonok áramlásához is, ezt pedig a c fénysebesség határozza meg. A fotonok érkezési ideje r távolság esetén Δt = r/c, ez alatt a v sebességű részecske eredeti helyéhez képest vr/c utat tesz meg. A töltések közötti erőhatás nagyságát és irányát ezért nem az határozza meg, hogy pillanatnyilag mekkora az r távolságuk, hanem az, hogy mekkora volt Δt idővel korábban (retardáció). Ha a mozgás nem az összekötő r vektor irányában történik, akkor fellép az r és v vektorokra egyaránt merőleges erő, ezt írja le a B mágneses mező segítségével a Lorentz formula:

FLorentz = q(E +vxB)

Ezt felfoghatjuk a B mágneses mező definíciójának, amely megmondja, hogy a hatás késlekedése (retardáció) miatt, hogyan kell korrigálni a töltések közötti erőhatást. A mágneses kölcsönhatás a Coulomb erőt kiegészítő relativisztikus járulék, amely azonban nem a vektor felbontásnak megfelelő v irányába mutat, hanem arra merőleges. Ennek oka, hogy amíg a Coulomb erőt a virtuális fotonok impulzusa hozza létre, addig a mágneses kölcsönhatás a fotonok impulzusnyomatékához kapcsolódik, amely pedig merőleges az impulzusra. Másként fogalmazva, arról van szó, hogy mozgó töltések esetén a foton felhők terjedési iránya szöget zár be egymással, ami merőleges irányban is létrehoz egy erőhatást.

Korábbi írásunkban részletesen foglalkoztunk avval a kérdéssel, hogyan hoz létre a fénysebességű forgás mágneses nyomatékot, amely arányos a töltéssel és a Compton sugárral. Az anomális mágneses nyomatékot a kvantum fluktuációk által megnövelt sugárral lehetett értelmezni. Ez a növekedés úgy is szemléltethető, hogy az elektron virtuális foton felhője megnöveli a részecske effektív sugarát.

Az s elektronok különös viselkedése: a Lamb shift

Az előző írásban már utaltunk rá, hogy a kvantum fluktuáció miatt bizonyos energiaállapotok degenerációja megszűnik, amit Lamb és Retherford meg is figyelt a Hidrogén atom két állapota között. Az energianívókat a Schrödinger egyenlet szerint az n fő kvantumszám határozza meg, de a relativisztikus Dirac egyenlet szerint ezek a nívók felbomlanak az L mellék kvantumszám szerint, ezt nevezik finom-kölcsönhatásnak, melynek mértéke a már említett α állandóval jellemezhető. Az L kvantumszám határozza meg az elektron pálya impulzusnyomatékát. Az L kvantumszám n-1-nél nem nagyobb egész értékeket vehet fel. Az alapállapot 1s1/2, az első három gerjesztett állapot 2s1/2, 2p1/2 és 2p3/2. Itt az elő szám az n fő kvantumszám, az s és p azt jelöli, hogy L = 0, vagy L = 1. Az S = ½  spin és L csatolódik, kiadva az eredő impulzusnyomaték kvantumszámot, ami ½ vagy 3/2 lehet, ezt jelöli az alsó index. Megfelelő frekvenciájú elektromágneses sugárzással az 1s1/2 alapállapot gerjeszthető a 2p1/2 állapotba, mert ekkor a foton ħ impulzusnyomatéka viszi át az elektront a magasabb impulzusnyomatékú L = 1 állapotba. A hőmérséklet függvényében bizonyos számban a Hidrogén atom magasabb energiájú állapotai is betöltésre kerülnek, ezért felmerül a kérdés, hogy lehetséges-e a részlegesen betöltött 2s1/2 és 2p1/2 állapotok között is átmenetet létrehozni elektromágneses sugárzással. Ennek ellentmondani látszik, hogy a két állapot energiája a Dirac egyenlet szerint megegyezik.

 Viszont Lamb és Retherford kimutatta, hogy a szokásos optikai átmeneteknél sokkal kisebb frekvenciájú (1057 MHz) mikrohullámmal mégis indukálható átmenet, azaz a két állapot energiája ennek mértékében különbözik.  Ennek oka, hogy a –e2/r2 Coulomb erő r = 0 szingularitása feloldódik a kvantumfluktuáció miatt. A Schrödinger és a Dirac egyenlet egyaránt megengedi, hogy az elektron véges valószínűséggel ott lehessen az atommagban is, ahol r = 0. Az energiaszámításban integrálni kell a teljes tértartományra, melynek során az egyes tartományokban való tartózkodás valószínűségét szorozni kell az ott érvényes potenciális energiával. Az r = 0 határeset közelében a valószínűség arányos a térfogattal, azaz 4r3π/3-mal, ezért összességében az innen származó járulék az r sugárral lesz arányos, azaz határértékben nullához tart. Az s és p pályák között fontos különbség, hogy az s pályáknak nullától különbözik a valószínűségi sűrűsége a magban, szemben a p pályákkal, amely ott nullasűrűségű. Ennek oka, hogy nulla impulzusnyomaték zárt pályán csak úgy jöhet létre, ha a mozgási irány áthalad a centrumon. Viszont a p pályák nullától különböző impulzusnyomatéka miatt a mozgó elektron nem juthat oda. Az energia integrál mégis megegyezik a 2s1/2 és 2p1/2 pályák esetén, tehát az s pálya mag helyén számított potenciális energiajárulékát a p pálya más tartományai kiegyenlítik. A fluktuációs hatás döntően a mag helyén csökkenti a negatív potenciális energiát, míg onnan távolabb kisebb a szerepe. Az s és p pályák vonatkozásában ez azt jelenti, hogy az eredetileg degenerált pályák közül a 2s1/2 pálya energiája lesz nagyobb.

A Lamb shift számításánál abból indulhatunk ki, hogy a V(r) potenciális energia hogyan változik, ha az r vektorhoz hozzáadunk egy kis δr értéket. A sorfejtési eljárásban δr különböző hatványait kapjuk, amelyben a magasabb hatványok már elhanyagolható járulékot adnak. A számításnál célszerű a  differenciál vektort alkalmazni. A potenciális energia változása:

A potenciális energia változásának várhatóértékét az elektron ψ(r) állapotfüggvényét tartalmazó integrál adja meg. A fluktuáció minden irányban egyformán valószínű, ezért az integráláskor az első tag eltűnik. A második négyzetes tagban a három ekvivalens irány miatt belép egy 1/3-as faktor, amiért a várhatóérték:

 Az 1/r szerint változó potenciális energia  operátorral képzett deriváltja a szinguláris r = 0 pontban ugyan végtelen, de a teljes térre vett integrál véges lesz, és arányos az állapotfüggvény négyzetének nullaponti értékével:

Ez azt jelenti, hogy az állapotfüggvénynek a potenciális energia szingularitás pontján vett értéke – más szóval a centrum állapotsűrűsége – határozza meg, hogy a fluktuáció mennyivel növeli meg a potenciális energiát. A 2s pálya állapotsűrűsége a centrumban:

Itt a0 a Bohr sugár. Hidrogén atomban a potenciális energia V(r) = -e2/r, amiért a fluktuációs energianövekmény:

Az elektronpályák kiterjedését jellemző Bohr sugár viszonyát a fénysebességű forgások Rc = ħ/mc Compton sugárhoz képest az α = 1/137 Sommerfeld állandó reciproka határozza meg, ez az állandó, amely kifejezi az elemi töltés nagyságát is az e2 = αħc összefüggésben

a0 = ħ2/me2 = ħmc = Rc

A korábbi részben tárgyaltuk az elektron anomális mágneses nyomatékának kérdését, amit az Aflu = αRc fluktuációs amplitúdóval lehetett értelmezni. (Ez a fluktuációs amplitúdó azonos a klasszikus elektronsugárral, amelyet úgy definiálnak, hogy a Coulomb energia egyezzen az mc2 nyugalmi energiával). A potenciális energia növekményében szereplő fluktuációs kitérés ennél nagyobb, mert nem arról van szó, hogy a virtuális fotonok kilépése mekkora fluktuációt okoz a mágneses mezőben forgó elektron pozíciójában, hanem arról, hogy a pályamozgás során a centrum felé haladó mozgást milyen mértékben téríti ki a virtuális fotonok kibocsátása és elnyelése az atommag pozíciójához érve. Az egzakt számítást a kvantumelektrodinamika végzi el, itt ehelyett a fluktuációs kitérés δr paraméterét igazítjuk a kísérletileg mért 1057 MHz shift nagyságához, mely szerint:

δr = 0,7338·10-13 m

Ez a kitérési amplitúdó 0,19-szer kisebb a Compton sugárnál, de 26-szor nagyobb, mint a fluktuációs amplitúdó. A kitérési amplitúdó nem univerzális állandója az elektronnak, hanem a Hidrogén 2s pályára érvényes. Más pályákon eltérhet az értéke, például a kompaktabb 1s pályán ennél kisebb lehet.

A s elektron különös viselkedése: a Fermi kontakt kölcsönhatás

Az atommagon áthaladó s elektronok másik közvetlen hatása, hogy emiatt az elektron mágneses nyomatéka közvetlen kölcsönhatásba kerül az atommag mágneses nyomatékával. Az elektron mágneses nyomatékáról az előző bejegyzésben volt szó. A nyomaték egysége elektron esetén a Bohr magneton:

μel = /2m = ecRc/2

amelyet az elektron S spinjével és a ge = 2,0023 faktorral szorozva kapjuk meg a nyomaték operátorát. A fénysebességű forgások modelljében ez az Rc sugarú köráramra vezethető vissza.

Az elektronspin rezonancia (ESR) kísérletekben külső B mágneses mezőbe helyezünk olyan elektronokat, melyek spinjét nem kompenzálja a kémiai kötés. Ez paramágneses vegyületekben valósul meg. Az ilyen anyagoknak két alaptípusa van: a szabad gyökök és az átmeneti-, illetve ritkafémek vegyületek. Az előbbiekben a vegyérték héjakban párosítatlan elektronok vannak, az utóbbiakban a belső d és f héjak elektronjai csatolódnak úgy, hogy nem jön létre spin kompenzáció. Ekkor az elektronok energiája két nívóra hasad, melyek között f frekvenciájú mikrohullámú térrel besugározva rezonancia átmeneteket hozhatunk létre:

h·f = geμBB

A rezonancia frekvencia voltaképp a forgást végző mágneses nyomaték Larmor frekvenciája. Megmérve az f és B paramétereket megkapjuk a mágneses nyomatékot. A legegyszerűbb szabad gyök a Hidrogén atom, melyben az atommagot egyetlen proton alkotja. Mivel a proton spinje I = ½, így az elektronhoz hasonlóan szintén rendelkezik mágneses dipólussal, melynek nagyságát mag magneton egységben adhatjuk meg

μN = /2mp

Ezt a gp = 5,586 faktorral és az I spinnel szorozva kapjuk meg a nyomaték operátort. Alkalmazva B mágneses mezőt az atommagokkal is rezonanciát figyelhetünk meg, ez a mag mágneses rezonancia (NMR) spektroszkópia, amely módot ad az atommagok, például a protonok mágneses nyomatékának mérésére is. Mivel a mágneses nyomaték fordítva arányos a részecske tömegével, ezért a magok mágneses nyomatéka legalább három nagyságrenddel kisebb az elektronhoz képest.

 A mágneses dipólus az iránytól és távolságtól függő mágneses mezőt hoz létre a részecske körül

Bdipol = 3(μp·r)r/r5μp/r3

Az ESR kísérletben ez a belső tér módosítja a külső B mágneses mezőt, és felbontja két vonalra a rezonanciát, ez a hiperfinom szerkezet, melynek nagyságát a dipólus mágneses mezőjének várható értéke adja meg a paramágneses vegyület alapállapotában. Amikor az elektron alapállapota p pálya, létrejön az irányfüggő belső mágneses mező, viszont eltűnik gömbszimmetrikus s pályákon, emiatt a Hidrogén atom 1s pályáján nem várnánk hiperfinom felhasadást. Mégis megjelenik hiperfinom szerkezet, de ekkor a felhasadás nem függ az iránytól, azaz izotrop struktúra jön létre. Ezt írja le a Fermi-féle kontakt kölcsönhatás. A jelenség magyarázata, hogy az s elektron nullától különböző sűrűséggel van jelen a mag belsejében, ahol a dipólus mágneses mezője szinguláris. A szingularitás szintje 1/r3 hatványú, az integrálásnál ezt kell szorozni a mag körüli tartományban az r3-al arányos tartózkodási valószínűséggel, így a kölcsönhatás várható értéke véges marad. De honnan származik ez az irány független kölcsönhatás? Ez származtatható a Dirac egyenletből, de hasonló eredményre juthatunk a klasszikus elektrodinamika segítségével is.

Tekintsük a részecskét a fénysebességű forgások elvének megfelelően véges ’a’ sugarú forgó gömbnek, melynek felületén a töltés egyenletesen oszlik el, ekkor az elektrodinamika szabályai szerint mindenütt azonos lesz a forgó töltések által keltett mágneses indukció a gömb belsejében, függetlenül a forgási tengely irányától:

Bbelső = 2μn/a3

A gömbön kívül továbbra is a dipólus szabály érvényes, amelyben a mágneses mező várható értéke nulla az s pálya szimmetriája miatt. Az ’a’ sugarú gömb belsejében az állapotsűrűség változása elhanyagolható, és azonos lesz a Hidrogén 1s pályájának centrumban felvett értékével:.

Az integrálásnál ezt szorozni kell a 4a3π/3 térfogattal, míg a gömbön kívüli tartomány nulla járulékot ad. Felhasználva az elektron és a proton μe = geμBS, illetve μp = gpμNI operátorát, jutunk el a kölcsönhatás nagyságát leíró Fermi operátorához:

Az energia operátornak ez az alakja pontosan megegyezik avval, amit perturbáció számítással a Dirac egyenletből is kaphatunk, és jól reprodukálja a Hidrogén atom ESR spektrumában a protontól származó 1424 MHz frekvenciájú hiperfinom felhasadást.

A Fermi kontakt tag mérése nem ad felvilágosítást arról, hogy mekkora a számításban feltételezett gömb ’a’ sugara, mert ez kiesik a számításból. A fénysebességű forgás modellben ezt azonosíthatjuk az elektron Compton sugarával, amely 137-szer kisebb az a0 Bohr sugárnál, melyet egyébként a fenti összefüggés alapján kiolvashatunk a proton hiperfinom felhasadásából. Felvethető még, hogy nem kerülhet-e kívülre a proton az elektron belsejéből a centrumtól kitérítő fluktuációk miatt. Mivel a Lamb shift alapján számítva a centrumtól való kitérés mértéke több mint ötször kisebb a Compton sugárnál, ez a lehetőség kizárható. Igaz ugyan, hogy a Lamb shift a 2s pályától származik, de a tényleges kitérés ennél csak kisebb lehet, hiszen a belső pálya kompaktabb. Szokás a Fermi kontakt kölcsönhatást úgy értelmezni, mint ami a proton belsejébe jutó elektrontól származik. Ez a felfogás onnan származik, hogy a nagyobb tömeg miatt a magot nagyobbnak képzeljük az elektronnál. Ennek azonban az ellenkezője igaz, hiszen a mágneses nyomatékból számolható Compton sugár az elektronnál jóval nagyobb. Mivel a proton sugár 0,865·10-15m, azaz jóval kisebb az elektron Compton sugaránál (386·10-15 m), így helyesebb az a felfogás, hogy a kontakt kölcsönhatás létrehozásakor a proton helyezkedik el a több nagyságrenddel nagyobb kiterjedésű elektron belsejében. Ennek az sem mond ellent, hogy a pozitronnal való bombázási kísérletben az elektron hatáskeresztmetszete nulla, mert ennek oka, hogy ilyenkor a fénysebességgel forgó objektumot kívülről tanulmányozzuk, amiért a felület nullának adódik a Lorentz kontrakció miatt. A mágneses mérésben viszont a proton belülről „látja” az elektront alkotó forgás gömbfelületét.

A gyenge kölcsönhatás kettősarca: távolhatás és kontakthatás

A két nukleáris kölcsönhatás közül a gluonok által közvetített erős kölcsönhatás a közvetlen kontaktusban lévő kvarkokat kettesével és hármasával összeragasztja a mezonokban és barionokban, úgy szintén az atommagokban ez a kölcsönhatás kapcsolja össze a protonokat és neutronokat. Ez a kölcsönhatás rövid távú, távoli kvarkok és nukleonok esetén nem játszik szerepet. A gyenge kölcsönhatás viszont már kettős arcát mutatja felénk. Ez a kölcsönhatás nem jön létre két fermion (S = ½ spinű részecske) között, hanem az egyes fermionokat alakítja át. Az elemi részecskék közötti minden reakció megköveteli az impulzusnyomaték változatlanságát, ami a spinekre vonatkozólag az ½ + ½ = 1 szabálynak felel meg. Emiatt csak úgy alakulhat át az S = ½ spinű fermion egy másikba, hogy az S = 1 spinű bozon (gyönge kölcsönhatásnál a W és Z bozon) mellett egy további fermion – nevezetesen a neutrínó – is szerepet kap. A gyönge kölcsönhatásnak ezért két közvetítője van. A W és Z bozonok élettartama és hatótávolsága rendkívül rövid, de ez elegendő a „helyben történő”, azaz kontakt átalakításához. Ilyen átalakítás a bétabomlás, amikor egy neutron átalakul egy protonná elektron és neutrínó kibocsátása mellett  A kvark elmélet ezt úgy írja le, hogy a neutront alkotó egyik d kvark (-1/3e töltés) alakul át u kvarkká (2/3e töltés). Az átalakulás első lépcsőjében egy W- bozon (-e töltés) és egy proton lép ki, majd a W- bomlik fel egy elektronra és egy neutrínóra. A neutrínóra azonban új szerep vár, ha ütközik valamekkora távolságban egy protonnal, ez gyenge kölcsönhatás révén kiváltja egy W+ bozon kilépését, és létrejön egy neutron. A következő lépésben a W+ szétválik egy pozitronra és egy neutrínóra. A kvark elmélet szerint a proton egyik u kvarkja alakul át egy –1/3e töltésű d kvarkba. A „két fermion plusz egy bozon” szabály minden lépésben teljesül. Ez már távoli kölcsönhatás két nukleon között, amelynek közvetítője a neutrínó. A neutrínó által közvetített folyamat analógiába hozható a foton szerepével: ott két távoli elektron állapotváltozását közvetíti, hasonló történik a bétabomlásban, ahol két távoli nukleon kvark struktúrájának változása között jön létre kölcsönhatás, amit a neutrínó közvetít. Mi teszi a neutrínót alkalmassá távolhatás közvetítésére? Ennek oka, hogy a neutrínó a foton fermion párjának tekinthető: ugyanúgy nincs töltése és tömege, és ugyanúgy fénysebességgel terjed a térben, és ugyanúgy rendelkezik impulzussal is. Az egyetlen különbség, hogy a foton egytengelyű forgás, míg a neutrínó két tengely körül forog. A neutrínó nulla tömegét és töltését a fénysebességű forgás elve a relativisztikus kovariancia elvére vezeti vissza, amely megengedi olyan kettős forgások kialakulását, melyben a töltés és tömeg operátorok nullatömegű és töltésű állapota jön létre.

Az elektron család három tagja

A mezőelméletekben a kölcsönhatást virtuális bozonok kibocsátása és elnyelése hozza létre. Gyenge kölcsönhatásban az elektron-müon-tau családban a bozon kibocsátás az eredeti részecske megszűnésével jár együtt, és keletkezik egy neutrínó is. Ez eltér az elektromágneses kölcsönhatás mechanizmusától, ahol fennmarad az eredeti töltött részecske, és az impulzusmegmaradás szabályából következőleg a foton kibocsátás-elnyelés folyamata fluktuációt idéz elő. Gyenge kölcsönhatásban viszont két új részecske képződik az eltűnő részecskéből, amiért a virtuális mechanizmusban a kibocsátás és visszanyelés helyett szétválás és visszaképződés valósul meg, Ennek folyamán az impulzus megmaradása nem idéz elő fluktuációt a részecske pozíciójában.

A fénysebességű forgás koncepciójának egyik kiemelkedő sikere, hogy értelmezni tudja az elektroncsalád tagjainak tömeg viszonyait, mindennek előtt a tau részecske tömegére ad pontos értéket, noha erre a részecskék Standard Modellje nem kínál magyarázatot. A modell szerint az impulzusnyomatékot a tömeg, a fénysebesség és a Compton sugár szorzata adja meg: az egyetlen tengely körül forgó W bozon esetén a momentum mWRWc = ħ, míg a tau részecskénél a kettősforgás miatt mτRτc = ħ/2. Kapcsoljuk össze, a két összefüggést:

A fermiont alkotó kettősforgási frekvenciája a részecske határán kívül nullára csökken, ami sugárirányú Euler erőt hoz létre. Ennek hatására lép ki a W bozon egytengelyű forgása, melynek forgási sugara fénysebességgel növekszik. Ez a mozgás egy spirált hoz létre, amelynek frekvenciája annak mértékében csökken, ahogy a sugár növekszik. A frekvenciaváltozás integrálja azt adja ki, hogy φ szögelfordulás a sugarat eφ faktorral növeli meg. A W bozon és a neutrínó, akkor tudja visszaalakítani a fermiont, ha a forgás fázisa visszatér az eredeti irányba, ami félfordulatonként történik meg. Az első félfordulatnál Rτ/RW = eπ = 23,14. Mivel mW = 80,395 GeV/c2 a számított tömeg mτ = 1,737 GeV/c2 lesz, ami kevéssé tér el a mért 1,777 GeV/c2 értéktől. A müont a W bozon második, az elektron a harmadik félfordulatával értelmezve 75 illetve 3,24 MeV/c2 tömeget kapunk, ami eltér a kísérleti 105,7 és 0,511 MeV/c2 értékektől, az eltérés különösen az elektronnál nagy, ott már csak nagyságrendi az egyezés. Ez arra utal, hogy a W bozon és a neutrínó újra összekapcsolódása nem pontosan az eredeti irányban történik, csak annak közelében, ahol az impulzus visszanyerés még bekövetkezhet. Mivel az elektron, müon és tau részecske tömege jelentősen különbözik, így a W bozon kilépésekor a szintén kibocsátott neutrínók impulzusa is nagyságrendileg fog eltérni. Ez avval jár együtt, hogy a visszaképződés csak az eredeti részecskét tudja regenerálni, és emiatt az elektron nem mehet át müonba, vagy tau részecskébe. Ez összhangban van az energiamegmaradás elvével is: a virtuális W kibocsátás csak átmenetileg töri meg az energiamegmaradás törvényét. A virtuális folyamatban ezt az teszi lehetővé, hogy a W bozon nagy tömegét a tér erős görbületéhez tartozó potenciális energia ellentételezi.  A tau és müon nem stabilisak, ez előbbi bomlási ideje 2,3·10-13s, az utóbbié 2,2·10-6s. Ezt úgy értelmezhetjük, hogy a virtuális szétválási és összekapcsolódási folyamatok során a tau és müon visszaképződése részleges, ilyenkor tovább fut a W bozon fázisa és a következő félfordulatnál hozza létre a kisebb tömegű elektron típusú részecskét a hozzá tartozó kisebb impulzusú neutrínóval együtt. A W bozon eltűnésének végállomása az elektron, ahol minden szétválást újra egyesülés követ, ennek oka egyelőre a téridő szerkezetének titka maradt.

Van-e kontakt kölcsönhatása a gravitációnak?

De mi a helyzet a gravitációval, milyen hatás tartja fogva a Holdat a Föld, a Földet a Nap körül? Van-e itt is egy kontakt kölcsönhatás, amely ezt megvalósítja? Ezt igyekszik értelmezni már száz éve a fizika valamilyen kvantumos mechanizmussal, mindmáig sikertelenül. A fénysebességű forgások részecske modellje ezt úgy értelmezi, hogy a kettős forgás nem marad teljesen a részecske határán belül, ennek parányi hányadát az Euler erő kiviszi. De ennek ára van: a külső tartományban a forgás frekvenciája lecsökken követve a Kepler törvényeket. Ez a forgás is c sebességgel terjed, amely tovább görgeti a tér görbületeit és a negatív előjelű, vonzó gravitációs potenciális energiát. Mivel a frekvencia lecsökken, így a kerületi sebesség nem éri el c-ét, amiért nem teljesül a tömeg létrehozásának feltétele, e nélkül pedig a kvantum sem jöhet létre, hiszen tömeg híján nem társul a gravitációs forgáshoz impulzusnyomaték. Kontakt kölcsönhatást közvetítő gravitációs mező tehát van, tehát létezik, de ez a mező nem kvantumos. Így teljesedik ki a koncepció, hogy minden távolhatás mögött van valamilyen kontakt kölcsönhatás is.

Vessük össze a bolygók keringését a Nap körül az elektronéval, amely az atom magja körül végzi végeláthatatlan pályamozgását. Mi tartja pályán az elektront? A kibocsátott és elnyelt virtuális foton felhők lökései. Ezek a lökések kvantumokban érkeznek. De mi tartja pályán a Földet a Nap körül? Ennek oka, hogy a tér a tömegek által megalkotott görbületi szerkezettel rendelkezik, melyben a mozgás a „terepviszonyokhoz” alkalmazkodik. Mivel a görbületek lerövidítik az utat, a testek úgy tudják megtalálni a legrövidebb mozgási pályát, ha a nagy görbületű tartományokba igyekszenek. Ebben hasonlítanak a fényre, amely a legrövidebb optikai úthosszat keresi.  A legrövidebb út keresése kényszeríti a Földet közelebb Naphoz, ahol nagyobb a görbület, azaz erősebb a gravitációs vonzás. A nagyobb vonzóerő gyorsuláshoz vezet, amellyel járó nagyobb impulzus eltéríti a mozgást a Nap felé haladástól, és az energiamegmaradás törvényének engedelmeskedve létrehozza a zárt elliptikus keringési pályákat. A tér görbületei folytonosan változnak, nincsenek szakadások, nincsenek kvantumok a részecskékből folytonosan kibocsátott gravitációs forgásokban. Mozgása során a tömeg magával hurcolja a térgörbületeket, amelynek kialakításához időre van szükség. Távoli kozmikus katasztrófák megkésett üzeneteiről tudósítanak a gravitációs hullámok a LIGO kísérletekben.

 

.

A fénysebesség csökkenés mechanizmusa és a kvantum fluktuáció

Rugalmas és rugalmatlan kölcsönhatások

Az előző bejegyzés: Második kvantálás: a valószínűség valószínűsége

  Linkek a korábbi bejegyzésekhez             . . .

----------------------------------------------------------------------------------------------------------------------------------------------------

Ebben az írásban a fénysebességű forgásokat befolyásoló két jelenségről lesz szó. Egyik célunk annak tisztázása, hogyan érvényesül a fénysebességű forgások koncepciója optikai közegekben, ahol a fény sebessége kisebb, mint vákuumban. Ennek megértéséhez szükséges a kölcsönhatások rugalmas, illetve rugalmatlan jellegének megkülönböztetése is. Korábbi írásunk („Fizika vagy filozófia? Az energia. az idő és az anyag egységes világa”) részletesen ismerteti a fénysebességű forgások koncepcióját, de ott valamennyi megfontolás a vákuumban érvényes fénysebességből indult ki. Az írás másik célja, hogy számba vegye a kvantumelektrodinamika virtuális fotonjainak hatását, amely a fénysebességű forgások fluktuációját idézi elő. Geometriai képpel magyarázzuk, hogyan növekszik meg a mágneses nyomaték a fluktuációk miatt, és tisztázzuk a saját forgások és fluktuációk energia és impulzus viszonyait.

Fussunk először végig a fénysebességű forgás koncepcióját alkotó legfontosabb megállapításokon!

A tér, idő és anyag egységes világa

 

Gondolkodásunk kiindulópontja a megkülönböztetés, a szétválasztás, ezért beszélünk külön térről, időről és anyagról, de a fizikai világ mélyebb megértéséhez úgy juthatunk el, ha túllépünk ezen a szinten, és eljutunk az összekapcsoláshoz, és egységet teremtünk fogalmi rendszerünk egyes elemei között.

A tér és idő nem csupán rendezési elv, vagy matematikai absztrakció, ami által elhelyezzük a fizikai világ objektumait és sorba rakjuk eseményeit, hanem olyan entitás, amit fizikai objektumok és azok mozgásai építenek fel és jelölnek ki. Az első kérdés, ami felvetődik, hogy mi tűzi ki a tér pontjait, milyen mozgás köti össze ezeket a pontokat, és jelöli ki az irányokat? A tér önmaga végzi el a pontok kijelölését a részecskék megalkotásával, és a pontokat összekötő vonalakat is részecskék mutatják meg. Az így megjelenő fizikai világ viszont visszahat megteremtőjére, a térre és időre, és befolyásolja annak struktúráját, a geometria nem lesz független az anyagi világtól.

Mozgási állandók a téridőben

 

 A térnek három dimenziója van, ehhez kapcsolódik negyedik dimenzióként az idő. Az összekapcsolódás módja a c fénysebesség, a téridőt alkotó alapvető szerkezeti állandó, amely független a vonatkoztatási rendszertől. Ez határozza meg, hogy mekkora sebességgel jöhet létre bármilyen kapcsolat a tér pontjai között. A mozgások, változások mögött mindig ott van a változatlanság is. Az idővel szembeni állandóságot fogalmazzuk meg az energia által, míg ha a térben nem hat mozgató erő, az impulzus képviseli az állandóságot a helyváltoztatásban.

A téridő alapvető mozgásformái: körforgás és gömbforgás

 

Konkretizáljuk először a mozgásformákat az euklideszi geometria keretein belül! Ha a mozgás a pontokat összekötő vonalak mentén megy végbe, haladó vagy transzlációs mozgásról beszélünk, emellett létezik a mozgások olyan típusa is, amely az irányok megváltozásán alapul, és ha ez a mozgás a kiindulási irányba visszatér, körfolyamatról beszélhetünk. Ha valamilyen r sugárral és f frekvenciával körforgás megy végbe, annak kerületi sebessége v = 2πr·f = ω·r, ahol ω = 2πf a körfrekvencia.  A fénysebességű forgás azt jelenti, hogy létezik egy kritikus Rc = c/ω sugár, ahol a kerületi sebesség eléri a c határértéket. Ez a c kerületi sebességű körforgás, amely által az üres tér anyaggá, részecskékké válik, és megszületnek azok a tulajdonságok, amit energiának, tömegnek, impulzusnak, impulzusnyomatéknak és elektromos töltésnek nevezünk. A körforgás mellett létezik a körfolyamatnak olyan formája is, amely a tér minden irányát befutja, ez a gömbforgás, amit úgy is értelmezhetünk, mint két körforgás összekapcsolódását egy centrum körül. Ez a mozgásforma nem létezik a makroszkopikus objektumok esetén, kizárólag az elemi objektumok saját mozgásaiban nyilvánul meg. A térnek ez a forgástípusa alkotja a fermion típusú elemi részecskéket, melyek a tömeg megteremtésének színhelyét adják. Az üres térnek ugyanis nincs tömege, mégis a tér a tömeg forrásává válhat a relativitáselmélet szerint, mert fénysebességű mozgáshoz végtelenül nagy tömegnövekedés tartozik, amely a tér határértékben nulla tömegét véges nagyságúvá teheti. Az így képződő tömeg arányos a fermion saját forgásának frekvenciájával. A fermionnak elektromos töltése is van, melynek előjelét a két saját forgás királis szimmetriája határozza meg. A kiralitás révén formálódik ki az anyag és antianyag kettős világa, melynek ütközése az annihiláció, a fermionok eltűnési folyamata.

Mi a foton?

 

Itt térjünk ki arra, hogy a fénysebességű körforgás kapcsolódhat fénysebességű transzlációhoz is. A térnek ez a sajátos mozgásformája alkotja a kölcsönhatási bozonokat, melyek legismertebb képviselője, a foton, az elektromágneses kölcsönhatás közvetítője. A foton c sebességű transzlációját az teszi lehetővé, hogy a tengely körüli fénysebességű körforgás önmagában még nem hoz létre véges tömeget, mert nincs olyan kitüntetett pozíció a forgási tengelyen, ahová a tömeg lokalizálható lenne, szemben a gömbforgást végző fermionokkal. Más szóval a tömeg megjelenésének két feltétele van: a fénysebességű forgás és a lokalizálhatóság. Van viszont a fotonnak energiája és impulzusa is. A Planck formula szerint E = h·f = ħ·ω, ahol ħ = h/2π a redukált Planck állandó. A foton impulzusát a hosszegységre jutó hullámszám adja meg p = h/λ összefüggés szerint, amely egyúttal arányos az energiával, hiszen p = h·f/c = E/c, azaz E = p·c. A fotonnak tehát nincs nyugalmi tömege, de van impulzusa, amit az tesz lehetővé, hogy az impulzus nem pozícióhoz, hanem mozgáshoz kötött fizikai tulajdonság, melyet a fénysebességű helyváltoztatás hoz létre.

Mivel a sebesség a hullámhossz és frekvencia szorzata, azaz c = f·λ, és a fénysebességhez tartozó sugár Rc = c/2πf= c/ω, így a forgási kör kerülete – a foton saját rendszeréből nézve – megegyezik a hullámhosszal, vagyis Rc = λ/2π. A foton impulzusnyomatékkal is rendelkezik, amely az impulzus és a sugár szorzatából határozható meg:

p·Rc = (h/λ)·λ/2π = ħ

Így válik világossá a fénysebességű forgás elve alapján, hogy miért azonos a foton impulzusnyomatéka bármekkora is legyen a frekvencia.

Mi a fermion?

 

Gömbforgásként, azaz kettősforgásként értelmezett fermionokhoz ω körfrekvenciát rendelhetünk két fizikai elv egyesítésével: az egyik a Planck által megadott, a másik Einstein energia formulája:

mc2 = ħω

Hans Bethe zseniális ötlete volt, hogy a szimmetriaműveleteket összegző műveletek közé felvette mint identitás elemet, a 4π szögű forgást, és így beilleszthetővé tette a csoportműveletek közé az S = ½ spint is. Nála ez csak matematikai segédeszköz volt, melynek viszont a kettősforgás elve már fizikai tartalmat ad, mert a gömbforgás teljes fázistere 4π, szemben a körforgás 2π fázisterével, amely megadja az identitáselemet egytengelyű forgások esetében.  A fermion sugarát az ω körfrekvencia határozza meg:

Rc = c/ω = ħ/m·c

A fermion sugárhoz tartozó 2πRc kerület megegyezik a Compton által bevezetett λ = h/m·c hullámhosszal. Az m tömeget két c sebességű forgás hozza létre, ezért a p0 = m·c által definiált impulzus a teljes sajátimpulzus fele, amelynek kapcsolata a nyugalmi energiával a

2p0·c = mc2 azaz p0 = m·c/2

összefüggéssel fejezhető ki. A p0 impulzus feleződése – az egytengelyű fénysebességű forgáshoz képest – okozza az impulzusnyomaték feleződését is:

p0·Rc = (m·c)/2·(ħ/m·c) = ħ/2

Ily módon reprodukálja a fénysebességű forgás elve a Dirac egyenlet folyományát, mely szerint a fermionoknak saját impulzusnyomatékuk is van, amit az S = ½ spin jellemez. Az összefüggésből kifejezhetjük az Rc sugarat a saját impulzussal is:

Rc = h/p0

Ezáltal hasonló összefüggéshez jutunk a részecskesugár és saját impulzus között, mint ami elvezette de Broglie-t a részecskék hullámtermészetének kimondásához, mely szerint a mozgó részecske p impulzusához λ = h/p hullámhossz tartozik. Vagyis amíg a külső mozgáshoz hullámtulajdonság járul, addig a belső saját mozgást gömbforgás írja le.

A részecskékben fellépő tehetetlenségi erők

 

A részecskékben fellépő tehetetlenségi erőkkel részletesen foglalkozik a korábbi írás: (https://afizikakalandja.blog.hu/2020/04/17/a_fenysebessegu_forgas_koncepcioja_i_resz). Alapkérdés, hogy milyen erő kompenzálja a részecske saját forgásából származó mω2r centrifugális erőt? Erre a választ az általános relativitáselmélet alapján adhatjuk meg, amely kilép az euklideszi geometria világából. A gravitációs erő mezőelméletét úgy építhetjük fel, ha feltételezzük, hogy a tömeg maga körül a Kepler törvénynek megfelelő és a távolsággal lassuló frekvenciájú virtuális forgásokat gerjeszt. Ezek a forgások a Lorentz kontrakció miatt térgörbületet idéznek elő a tömeg körül, amely olyan erőt hoz létre, amely megfelel a Newton-féle tömegvonzási törvénynek. Az elvet kiterjesztve a részecskét alkotó fénysebességű forgásra extrém nagyságú térgörbület kapunk, amihez olyan erős gravitáció járul, amely kiegyenlíti a részecske saját forgásának centrifugális erejét. A tér ily módon képes stabilizálni forgási produktumát, a részecskéket.

Mért nincs a gravitációnak kvantuma?

 

A tömegből kiáramló fénysebességnél lassabb gravitációs forgások nem hoznak létre sem tömeget, sem impulzust, és így természetesen nem lehet impulzusnyomatékuk, valamint kvantumuk sem. Ebből adódik, hogy a gravitáció elmélete – az általános relativitáselmélet – a tér görbületein alapuló folytonos térelmélet, amely emiatt nem fogalmazható meg a többi fizikai kölcsönhatás kvantált mezőelméletének eszközeivel.

Az elektromos töltés eredete

 

Másik alapvető kérdés az elektromos töltés eredete. Ez a két forgás között fellépő periodikusan változó ħc/Rc2 amplitúdójú Coriolis erőre vezethető vissza. A Coriolis erő által generált virtuális fotonok intenzitása a ħc szorzattal arányos és független a fermion tömegétől. A virtuális fotonok által közvetített elektromágneses kölcsönhatás arányossági tényezője az α = 1/137 Sommerfeld, vagy más néven finom kölcsönhatási állandó, amely megadja az elemi töltés nagyságát:

e2 = αħ·c

Milyen információt szerezhetünk a fotonokról?

 

A fent ismertetett koncepcióban mindig a fény vákuumbeli sebességét vettük alapul. Indokolt ezért feltenni a kérdést, hogy milyen változást okoz a részecskék struktúrájában a fénysebesség csökkenése optikai közegekben?

Első lépésként gondoljuk végig, hogy mit kell érteni azon a kijelentésen, hogy a fény vákuumban mindig ugyanavval a c sebességgel terjed? Ez azt jelenti, hogy létezik a térben két elkülönült pont, az egyikben létrejön a fény, illetve a foton, ez az emisszió, a másikban pedig elnyelődik, ez az abszorpció. A két esemény között eltelt idő csak a két pont távolságától függ és nem számít egymáshoz képesti sebességük. De mit tudunk mondani a fotonról a két esemény között? Amikor vákuumról beszélünk, avval kijelentjük, hogy a foton nincs kölcsönhatásban a környezetével, más szóval erről az állapotáról nem kapunk közvetlenül semmilyen információt. Erre az állapotra csak visszakövetkeztethetünk azokból a megfigyelésekből, amely az elnyeléshez kapcsolódik, annak tér és időbeli periodikus változása alapján, vagyis az interferencia jelenségekből. Mivel menet közben nem látjuk a fotont, így nem arra a kérdésre tudunk válaszolni, hogy éppen hol van, hanem arra, hogy hol lehetett. Az utóbbi kérdésre adunk választ, amikor a foton hullámtermészetéről beszélünk. Mennyiben változik meg a kép, amikor a fény optikai közegben való lassulásáról beszélünk? A közeg jelenléte azt jeleni, hogy ekkor a foton már állandó kölcsönhatásban van környezetével, viszont az információt hordozó abszorpciós esemény már megváltoztatja a foton állapotát. Tehát amíg a foton a közegben van, tulajdonságait a kölcsönhatás ugyan befolyásolja, de információt adó esemény még nem történik vele, azaz továbbra is csak arra a kérdésre válaszolhatunk, hogy hol lehetett a foton az abszorpció előtt, és ott milyen kölcsönhatásra lett volna képes, ha valamilyen elektromos töltés kerülne az útjába.

Rugalmas és rugalmatlan kölcsönhatás

 

A kölcsönhatásnak két alaptípusa van, az egyik a rugalmas, a másik a rugalmatlan kölcsönhatás. Amikor elektromágneses sugárzás éri az anyagot, az elektromos tér hatására a töltések kényszerrezgésbe jönnek, amelynek frekvenciája megegyezik a sugárzással, de a rezgés fázisa késni fog. Elektronok esetén várhatunk nagyobb rezgési amplitúdót a kis tömeg miatt, ennek mértéke pedig akkor jelentősebb, ha közel esik a sugárzás frekvenciája az elektronmozgás sajátfrekvenciájához. Ha a sugárzás elektronátmeneteket hoz létre az anyagban, elnyelődésről beszélünk, transzparens közegről pedig akkor van szó, ha az elnyelődés kismértékű.

A fénysebesség lassulása optikai közegekben

 

Amikor nincs, vagy legalábbis elhanyagolható az elnyelődés, és nem változik meg a belépő sugárzás energiája sem, rugalmas kölcsönhatástól beszélünk, ahol csak az impulzus változik meg. Erre példa, amikor vízben, vagy üvegben, lassabban terjed a fény, de színe, azaz energiája nem változik meg. A fény sebességén itt fázissebességet kell érteni, ami kifejezhető a frekvencia és a hullámhossz szorzatával. A közegben fellépő lassulás mértékét fejezi ki az n törésmutató:

cn = c/n

Az n törésmutató a közeg makroszkopikus jellemzője, amely függhet a belépő sugárzás hullámhosszától is. Ezt a hullámhosszfüggést nevezzük diszperziónak, és ennek köszönhetjük, hogy a szivárvány, vagy a prizma fénytörése felbontja a fehér fényt komponenseire. A makroszkopikus jelleg abban is megnyilvánul, hogy nem atomonként, vagy elektronokként kell vizsgálni a jelenséget, hanem a közeg atomjainak, illetve töltésrendszerének egésze lép kölcsönhatásba az elektromágneses mezővel. A közeg mikroállapotai a termodinamika játékszabályai szerint más és más betöltési számmal rendelkeznek, amit a kvantummechanikai leírás úgy vesz tekintetbe, hogy ezekkel a betöltési faktorokkal súlyozza a lehetséges mikroállapotokat. Ez a formalizmus a makroszkopikus és mikroszkopikus világ találkozási pontja, a sűrűségmátrixos számítási technika. Ennek segítségével lehet felépíteni az egyes töltésektől származó járulékokból a törésmutatót, vagy a mágneses szuszceptibilitást, és ez írja le az egyes fizikai paraméterek hőmérsékletfüggését is.

 A relativitáselmélet szerint a vákuumbeli fénysebesség a kölcsönhatások felső határa, amiért azt várnánk, hogy az n törésmutató optikai közegekben csak nagyobb lehet, mint 1,0. Változatlan frekvencia mellett, úgy csökkenhet a sebesség a vákuumhoz képest, ha rövidebb lesz a hullámhossz:

λn = cn/f = λ/n

Ebből viszont az következne, hogy optikai közegben a fény hullámhossza mindig rövidebb, mint vákuumban.

A hullámok fázis- és csoport sebessége

 

Itt azonban hozzá kell tenni, hogy a frekvencia és a hullámhossz szorzata a fázissebességet adja meg, ami nem okvetlenül azonos a kölcsönhatási sebességgel. Az utóbbi felel meg a hullám csoportsebességének. A kettő közötti különbség akkor lép fel, ha nem egyszerű szinuszos hullámról van szó. Szemléltessük a különbséget a vízbe dobott kő példájával! Álló víz esetén a kavics beesési helye körül gyűrűk alakulnak ki, ahol a terjedési sebességet a hullámok frekvenciájának és szélességének szorzata adja meg, miközben a vízmolekulák a fel-le hullámzáson kívül nem mozdulnak el. Emiatt csak fázissebességről beszélhetünk. De mi történik, ha egy folyóba dobjuk a követ? Ekkor a koncentrikus gyűrűk középpontja a víz sebességével együtt halad, ezt nevezzük csoportsebességnek. A kialakuló gyűrűk első frontvonala ennél gyorsabban halad, mert itt összeadódik a gyűrűk képződési sebessége és a folyó sodrási sebessége.  A fordított történik a gyűrűk hátsó frontján, ahol a sebességet a két sebesség különbsége határozza meg. Ez példa arra, amikor a fázissebesség lehet kisebb is, nagyobb is, mint a csoportsebesség.

A fenti példával a kétféle hullámsebesség definícióját szemléltettük,  de más jelenségről van szó, amikor a fény álló közegben folytatja útját. Ez esetben modulált hullámok kialakulása húzódik meg a kétféle sebességdefiníció mögött. Matematikailag úgy hozhatunk létre modulált hullámot, ha például két hullám szuperponálódik, az egyik frekvenciája legyen f1, a másiké f2. Ekkor lebegés jön létre, lesz egy széles f1 – f2 frekvenciájú „boríték” hullám, amelynek belsejében keskenyebb és nagyobb frekvenciájú (f1 + f2) hullámok jönnek létre. Diszperzió esetén, azaz ha függ a frekvenciától a sebesség, a nagyobb frekvenciájú hullámok fázisa más sebességgel fog haladni, mint a széles hullámok centruma, azaz a fázissebesség eltér a csoportsebességtől.

Mikor jönnek létre modulált hullámok?

 

Szokásos optikai közegekben nem jön létre modulált hullám, emiatt a fény sebessége csak lassabb lehet a vákuumhoz képest, azaz n értéke 1,0 fölé megy. Levegőben a növekedés kicsi, n = 1,0003 körül van, vízben már jelentős a változás n = 1,333, az üvegekben megközelíti a 2-őt is. Ezt úgy foghatjuk fel, hogy ezekben a közegekben a fényhullámok jó közelítésben szinuszosak, ahol a fázissebesség egyúttal a fény kölcsönhatási sebessége is, amely nem haladhatja meg c-ét. Létrejöhetnek azonban speciális körülmények, amikor a fázissebesség átlépheti c értékét. Erre példa, amikor röntgensugarak haladnak át vízen, ahol n értéke – ha parányival is (10-6) – de kisebb, mint 1,0. A hullám modulációja ekkor azért következik be, mert a sugárzás frekvenciája közel van a rezonanciaértékhez. Szintén anomálisak a plazma állapotú közegek, például a Föld felső ionoszférája, amelyben a rádióhullámok fordított irányban hajlanak, mint amit a Snell szabály előír (a szabály szerint a beeső fényhez képest a megtört fény a merőleges irányában hajlik meg), jelezve, hogy itt a törésmutató kisebb, mint vákuumban. Ez esetben a töltések kaotikus áramlása okozza a fényhullám modulációját. Ennek az inverziónak köszönhetjük, hogy hosszúhullámú rádióadást nagy távolságban is foghatunk. Az említett példák demonstrálják, hogy a fázissebesség tényleg meghaladhatja a fény vákuumbeli – úgynevezett információtovábbítási – sebességét.

A sugárzás impulzusnövekedése optikai közegekben

 

Mivel a fény p = h/λ impulzusa fordítva arányos a hullámhosszal, az optikai közegbe való beérkezés során megnövekszik a fény impulzusa, amely növekmény az anyagi közeggel való kölcsönhatásból származik.

pn = hn = n·p > p

 Az optikai közegből való kilépés után a fény újra az eredeti sebességgel halad tovább, tehát az impulzusátadás csak addig áll fent, amíg tényleges kölcsönhatás van az elektromágneses sugárzás és a közeg töltésrendszere között. De mi a foton impulzusnövekedésének forrása? A hatás és ellenhatás törvénye szerint, amikor a foton periodikusan változó elektromágneses ereje hat a töltésekre, fellép ugyanakkora ellenhatás is, azaz a töltések is hatnak a fotonokra, az erőhatás pedig impulzusváltozással jár. Elvben a közeg töltésrendszerének impulzusa annyival csökken, amekkora nyereségre a fotonok szert tesznek, de a töltéshordozók nagy száma és tömege miatt a közeg impulzuscsökkenés észrevehetetlen.

A foton lecsökkent sebessége miatt, akár lassabban is haladhat, mint a nagy sebességre felgyorsított elektronok. A fénysebesség átlépésének pillanatát hirtelen fényfelvillanás kíséri, ez a Cserenkov sugárzás, amely fénytani analógiája a hangrobbanásnak, amikor a repülőgép átlépi a hangsebességet.

Itt jutottunk el ahhoz a ponthoz, amikor felvethetjük a kérdést, hogyan változik meg a foton struktúrája a fénysebességű forgás modellben. Ha a foton lassabban halad, lassabb lesz a körforgás kerületi sebessége is, mert nem rendelkezhet a foton egyidejűleg kétféle sebességgel. Ez a lassulás a körforgás sugarát érinti, amely emiatt szintén csökkenni fog:

Rc,n = cn/ω = Rc/n

A sugár tehát ugyanúgy kisebb lesz, mint a hullámhossz. Viszont változatlan marad az impulzusnyomaték, melynek definíciója:

pn·Rc,n = p·Rc = ħ

A Planck állandó a kvantum egysége, amely nem változik meg, ezért a sugár csökkenése impulzusnövekedéssel jár együtt. Felvetődik azonban a kérdés, hogy a sugár csökkenésére tudunk-e valamilyen közvetlen bizonyítékot felmutatni? Elvben ilyennek tekinthetjük a fényszórási és diffrakciós kísérleteket. Ezt ugyan a hullámhosszal szokás értelmezni, mert a jelenség akkor jelenik meg, ha a hullámhossz kisebb, vagy összemérhető a kristályrács atomjainak távolságával. Viszont a hullámhossz longitudinális jellemző, és amikor a fény atomok közötti réseken halad át, inkább a foton keresztmetszete (sugara) játszhat szerepet. Persze a hullámhossz és a sugár egyaránt csökken, így a két lehetséges magyarázat nem ütközik.

Az elektronsugár definíciója

 

Az anyag és sugárzási mező kölcsönhatásának másik megnyilvánulása, amikor elektromágneses sugárzás jelenlétében vizsgáljuk az elektron tulajdonságait. Ebben az esetben is felvethető a kérdés, vajon a kölcsönhatás megváltoztatja-e az elektron Rc sugarát? Amikor részecske sugárról beszélünk, meg kell különböztessünk kétféle definíciót, az egyik a hatáskeresztmetszetből, a másik a nyomatékokból származtatható. Az impulzusnyomatékot a „nyomatéki” sugárral, azaz Rc-vel, értelmezhetjük, másfelől „keresztmetszeti” sugárról van szó, amikor pozitronokkal bombázzuk az elektront, hogy meghatározzuk a részecske eltalálásának valószínűségét. Ezek a Bhabha szórási kísérletek arra az eredményre vezettek, hogy nulla az így mérhető hatáskeresztmetszet, azaz nulla a sugár. Ez jól értelmezhető a fénysebességű modellel, mert külső rendszerből nézve a Lorentz kontrakció miatt az elektron felülete nullának „látszik”. Itt a „látszik” szó azt jelenti, hogy ha az elektront saját forgó rendszerében néznénk, ott változatlan lenne a felület.

Az elektron mágneses nyomatéka

 

Vajon a külső megfigyelő milyen eredményre jut, amikor a mágneses nyomatékból határozza meg a sugarat?

 A μel mágneses nyomaték a B homogén mágneses mező hatására

fLarmor = B·μel/h

frekvenciájú forgást végez a mező iránya körül. Itt hangsúlyozni kell, hogy egytengelyű forgásról van szó, szemben az impulzusnyomatékkal, amely kettős tengelyforgás eredménye. A frekvencia és a B mágneses mező mérésével határozhatjuk meg a mágneses nyomaték kísérleti értékét. Az elektron mágneses nyomatékát a Dirac egyenletből lehet származtatni, de ugyanerre az eredményre vezet a fénysebességű forgásmodell is. A Maxwell egyenletekből származtatható mágneses nyomaték, melyet az Rc sugarú j = e·f = eω/2π nagyságú köráram hoz létre:

μel = j·F = e·f·Rc2π = eωRc2/2 = ecRc/2

ahol F = Rc2π a köráram által bezárt terület, és felhasználtuk, hogy fénysebességű forgásokban ωRc = c. Behelyettesítve a nyomatéki sugarat:  Rc = ħ/m·c,  jutunk el a Bohr magneton szokásos definíciójához:

μel = eħ/2m

A ténylegesen mért mágneses nyomaték azonban 1,00116-szor nagyobbnak adódik az elméleti értékhez képest. Ez úgy értelmezhető a fenti összefüggés alapján, mint a saját forgás p0 = m·c impulzusának csökkenése, illetve az Rc elektronsugár növekedése.

Virtuális fotonok és a fluktuációs amplitúdó

 

 A kvantumelektrodinamika (QED) mezőelmélete a mágneses nyomaték növekedésének okát kvantum-, vagy más elnevezéssel vákuumfluktuációra vezeti vissza. Az elmélet szerint az elektromágneses kölcsönhatást a töltött részecske, például az elektron által kibocsátott és elnyelt virtuális fotonok közvetítik. Arra viszont nem ad magyarázatot az elmélet, hogy miért következnek be ezek a folyamatok. Ezen a ponton nyújt segítséget a fénysebességű forgások koncepciója, amikor választ kínál erre a kérdésre is. A részecske stabilitását az adja meg, hogy a saját forgások kifelé mutató centrifugális erejét a tér extrém görbületéből származó erős gravitáció kiegyenlíti. Viszont kettősforgások esetén fellép a Coriolis erő is, amely ugyan átlagértékben nulla, de a periodikusan változtatja a kifelé mutató erőt, és emiatt a maximumoknál nagyobb lesz annál, amit az erős gravitációs képes ellensúlyozni, míg a minimumoknál megfordul a helyzet, és ott az erős gravitáció befelé húzó ereje lesz nagyobb. Az előbbi esetben történik a foton kibocsátás, míg az utóbbinál az elnyelés. A kibocsátott és elnyelt fotonoknak van impulzusa, ezért az impulzusmegmaradás miatt az elektron is meglökődik, ami pozíciójának állandó fluktuációját idézi elő. Ez átlagértékben nem okoz helyváltoztatást, de létrejön egy fluktuációs állapot, amit az Aflu amplitúdóval jellemezhetünk. Mekkora ez az amplitúdó? Itt két dolgot kell figyelembe venni, egyrészt, hogy mekkora átlagosan a virtuális fotonok impulzusa, másrészt, hogy mekkora a kibocsátó töltött részecske tömege. Az elemi részecskék töltése abszolút értékben megegyezik, ami azt jelenti, hogy a fotonok intenzitása azonos lesz egy adott távolságban a részecske centrumától, és ennek mértékét az α = 1/137 Sommerfeld állandó határozza meg az e2 = αħc összefüggés szerint. Viszont a fluktuációs amplitúdó csökken a tömeggel, és így arányos lesz Rc-vel a következő összefüggés szerint:

Aflu = αRc = αħ/m·c

Ebből látszik, hogy jelentős amplitúdójú fluktuáció a kis tömegű elektronok esetén jön létre.

A fluktuáció által megnövelt mágneses nyomaték

 

Az Rc-vel arányos mágneses nyomaték számításánál a fluktuáció miatt megnövelt Rflu,c sugarat kell figyelembe venni, amely akkor reprodukálja jól a nyomatékot, ha

Rflu,c = (1 + α/2π)Rc

Az α tényező 2π-vel való osztása annak a következménye, hogy a Larmor precesszió tengelyiránya tetszőleges lehet a 2π hosszúságú fázistartományon belül.

A QED által alkalmazott időtől függő perturbációs eljárás első közelítésének felel az a korrekció, ami a fluktuáció által megnövekedett sugárral magyarázható. A QED elmélet magasabb rendű korrekcióikat is figyelembe vesz, ami által több mint tíz tizedes jegyig lehet reprodukálni a kísérletileg mért értéket.

A fénysebességű forgások koncepciójában a sugárnövekedést a c forgássebesség lassulásával lehet értelmezni:

cflu = c/(1 + α/2π)

A fluktuációból és saját forgásokból eredő impulzusok összegzése

A fluktuációs mozgás sugárirányú és merőleges a részecske saját forgásának irányára, emiatt a két mozgáshoz tartozó impulzusvektor négyzetösszegében eltűnik a kereszttag, amiért:

p2 = pflu2 + p02

Ez megfelel a relativitáselmélet energia összegzési szabályának, amit a kovariancia elv ad meg.

E2 = p2c2 + m2c4

 Felhasználva a kovariancia törvényt, meghatározhatjuk a részecske saját mozgásán belül a fluktuációs és forgási járulékokat:

pflu2cflu2 + m2cflu4 = mc4

Ebből származtatható a fluktuációs impulzus:

pflu2 = (2α/π)m2c2

Ugyancsak a számításból adódik, hogy ennek felével csökken a p02 forgási impulzus, azaz a fluktuációs impulzusnak csak fele részben lehet a forrása. Ez azt jelenti, hogy a mágneses nyomaték Larmor precessziójában a fluktuációs impulzus másik felét a precessziót indukáló mágneses mező fotonjai szolgáltatják. Ez egy újabb példa a foton mező és az elektronok közötti rugalmas kölcsönhatásra.

Az elektront alkotó saját mozgások energiamérlege

 

Az impulzus négyzete a kinetikus energiával arányos, ezért úgy összegezhetjük megállapításainkat a fénysebességű forgások koncepciójában, hogy a részecske saját mozgásához tartozó energiának két összetevője van: az egyik a fénysebességű forgástól, a másik a fluktuációtól származik, és az utóbbi a sajátenergia 0,464 százalékát képviseli. Ezáltal veszi figyelembe a fénysebességű forgások koncepciója a QED virtuális fotonjainak hatását az elektron saját mozgására.

A fermionokat tekintjük a tér pontkijelölő objektumainak, a fluktuáció abban okoz változást, hogy az így kijelölt pontok pozíciója Aflu mértékében elmosódik. Fizikai objektum sohasem lehet pontszerű, a pont fogalma csupán matematikai extrapoláció. A tömegvonzás és az elektromos kölcsönhatás törvényei 1/r szerint változó potenciális energiára, illetve 1/r2 szerinti erőtörvényre vezetnek, melyek szingulárisak, ha a sugár eléri a nulla értéket. De van-e olyan mérés, amikor két fizikai objektum, két töltött részecske távolsága nulla lesz? Ilyen állapot megfigyelhetőségét a kvantummechanika bizonytalansági törvényei is kizárják. Ennek következményeiről lesz szó következű írásban, amely a Hidrogén atom spektrumában megfigyelt Lamb shiftre ad magyarázatot.

Az előző bejegyzés: Második kvantálás: a valószínűség valószínűsége

Linkek a korábbi bejegyzésekhez

Második kvantálás: a valószínűség valószínűsége

Az anyag részecske és hullámtermészete

 

Bevezetés

Az előző írásban a mikrovilág törvényeit kíséreltük meg úgy bemutatni, hogy elfogadható legyen a józanész számra is, ennek útja a fogalmi rendszer hozzáigazítása volt a számunkra elérhető információhoz. Kulcskérdés volt a mozgási pálya helyett a mozgási állapot fogalmát bevezetni, amelyben a valószínűség összekapcsolódik a determinizmussal. A kvantummechanika a valószínűségen keresztül enged betekintést a mikrovilágba, ennek megjelenése nem az alkalmazott matematikai formalizmus következménye, amely operátorokat rendel az egyes fizikai mennyiségekhez, hanem szükségszerűen következik abból, hogy olyan mozgásokat írunk le, amely nem látható közvetlenül, amire csak becsléseket tehetünk. Ez új megvilágításba helyezi az anyag kettős természetére vonatkozó felfogást, amelyben szemléletünk kettőssége tükröződik: részecskeként értelmezzük a közvetlenül megfigyelhető fotont, amely valahol ugrást idéz elő két állapotot között, de hullámként jellemezhető valószínűségi leírást adunk az ugrást megelőző állapotra. A valószínűségi leírás és ebből fakadóan a hullámtermészet, gondolati konstrukció, amely nem tévesztendő össze a megfigyelt valósággal, ahol kötöttebbek a szabályok a gondolat által megengedett utakhoz képest. Felmerül viszont a kérdés, hová tegyük de Broglie korszakalkotó felismerését, amely minden részecskének hullámtermészetet is tulajdonít, és amely elképzelés Davisson (Clinton Davisson, 1881—1958, Nobel díj: 1937)  és Germer (Lester Germer, 1896-1971) méréseivel alátámasztást is nyert? A válaszhoz tovább kell lépni a kvantummechanika elméletében, és szemügyre venni annak mélyebb változatát, amit mezőelméletnek, illetve második kvantálásnak is neveznek. A módszer matematikája messzire vezet, nem is célunk annak ismertetése, e helyett az elmélet fizikai tartalmára fokuszálunk, melynek összebékítése a józanésszel nagyobb kihívást jelent, mint amivel a hagyományos kvantummechanika fogalmi rendszerének bemutatásánál találkoztunk.

Klasszikus elektrodinamika

Az elektrodinamikai mezőelmélet fogalmi rendszerének ismertetése előtt fussunk végig vázlatosan a klasszikus elmélet fontosabb fogalmain. Kiindulópont a töltés fogalma, ezt tekintjük az elektromos erő forrásának, amely a távolság négyzetével fordítottan arányos

FCoulomb = q1·q2/r2

Ha a két töltés előjele megegyezik, akkor taszítás, ha ellentétes, akkor vonzás jön létre a töltések között. Ha egy rendszerben sok töltés van, akkor az erőhatás páronként összegzett tagokra bontható fel, sok töltés esetén ez nehézséget okoz, ami célszerűvé teszi, hogy bevezessük az egész rendszer erőhatásait összegyűjtő elektromos mező fogalmát, melyet az egységnyinek választott töltésre ható erővel definiálunk:

FCoulomb = E

Az elektromos mező a qi töltés ri(xi,yi,zi) koordinátákkal jelölt helyén jön létre az rj pontokban lévő qj töltések hatására, ahol az erők vektorokként adódnak össze (itt és a következőkben a háromkomponensű vektorokat vastag betűk jelzik), az i és j pontokat összekötő vektorok irányát az εij egységvektor jelöli:

Borbély paradoxon

A fenti összegzés azonban csapdát rejt magában! Az elektromos mező fenti definíciója ugyanis paradoxonhoz vezet, amit nevezhetünk borbély paradoxonnak.

A katonaságnál napi parancsba adják, hogy másnapra mindenki legyen megborotválva. Aki tud borotválkozni, azt maga végezze el, aki nem tud, azt a borbély fogja megborotválni. A parancs azt is tartalmazza, hogy a borbélynak csak azokat szabad megborotválni, akik ezt maguk nem tudják megtenni. A paradoxon onnan származik, hogy mit tegyen a borbély saját magával? Ha nem borotválkozik meg, akkor a parancs első részét szegi meg, ha viszont megborotválkozik, akkor a második részét, hiszen ő tud borotválkozni. Paradoxon olyankor jöhet létre, amikor van a csoportnak egy kiemelt tagja, aki, vagy ami, valamilyen műveletet végezhet a többiekkel, és ezt a műveletet önmagára is alkalmazni kell.

A mező definíciója megköveteli, hogy abban szerepeljen az összes töltés hatása, és érvényes legyen a teljes tértartományban. Mivel nem zárhatunk ki egyetlen töltést sem, így a mező hatása megjelenik a mezőt építő minden töltésen, noha a mezőt definiáló Coulomb erőnek csak két különböző töltés között van értelme. A mező definíciójának ez az ellentmondása okoz majd problémát a részecskék saját energiájának számításában, ahol végtelenül nagy érték jelenik meg.

Lorentz erő

A töltések mozgást is végeznek, amely miatt kialakul egy másodlagos erő, amit a B mágneses mezővel jellemzünk. Ennek oka, hogy az erő terjedéséhez idő kell, amiért az erő iránya és nagysága „késve” követi a töltés mozgását. Ennek mértékét a Δt = rij/c retardációs idő adja meg, ahol c a fénysebesség, amely az elektromos erő terjedési sebessége. A két töltés között ható erő a korábbi helyzethez igazodik, ahol a tényleges helyzettől való lemaradás távolsága a töltés v mozgási sebességétől függ: vΔt = rijv/c. Ha a töltés nem a vele kölcsönhatásban lévő másik töltés irányában mozog, akkor az új rij vektor iránya is más lesz. Emiatt az F erő két komponensre bontható fel, ahol az elektromos mező mutat a két töltés pillanatnyi helyzetét összekötő egyenes irányába. A másik komponens nagysága megfelel a Lorentz erő mágneses komponensének, de iránya nem v-vel párhuzamos, hanem arra merőleges. Ennek magyarázatát az adja, hogy az elektromos kölcsönhatást a közvetítő fotonok impulzusa, míg a mágneses hatást a fotonok impulzusnyomatéka idézi elő. Az így definiált B mező jelenik meg a Lorentz erő kifejezésében:

FLorentz = q(E + vxB)

Bevezethető még a J = v elektromos áram fogalma is. Az áram a klasszikus pályafogalomhoz kapcsolódik, ahol ismertnek tételezzünk fel a töltés pályáját is. Szintén a klasszikus felfogásnak felel meg, hogy a töltésnek nincs legkisebb egysége, elvben tetszőlegesen kicsi lehet. Emiatt lehet bevezetni a térfogategységre jutó töltésmennyiséget, a ρ(r) töltéssűrűséget, és hasonlóan beszélhetünk a j(r) áramsűrűségről is.

Maxwell egyenletek

Az elektrodinamika elektromos és mágneses mezőjének egymáshoz képesti kapcsolatát, illetve a töltés- és áramsűrűségből való felépülését négy parciális differenciálegyenlet írja le, ezek a Maxwell egyenletek.

A Maxwell egyenletekről túlzás nélkül elmondhatjuk, hogy a klasszikus fizika csúcspontját képviselik, amely egyrészt választ ad a fény eredetére, másrészt csírájában már ott van benne a relativitáselmélet, és megalapozza a kvantummechanika hullám és részecske kettősségét is.

Az első egyenlet adja meg az elektromos mező forrását, ami a töltéssűrűségtől származik. Ez az egyenlet a Coulomb törvénynek felel meg. A második törvény a mágneses mező időbeli változása által létrehozott elektromos mezőt adja meg, amely ennek hatására körülveszi a mágneses mezőt. A harmadik egyenlet azt fejezi ki, hogy a mágneses mezőnek nincs a töltéssel analóg forrása, ezt úgy is mondják, hogy nem létezik mágneses monopólus. Az utolsó egyenlet összetettebb, amely azt fejezi ki, hogy mágneses mezőnek két forrása is van, az egyik az elektromos mező változása, a másik az áramsűrűségtől származik, a képződő mágneses mező körülveszi az elektromos mezőt, illetve az áramot.

Vektoralgebrai differenciálok

Néhány szót az egyenletekben szereplő matematikai szimbólumokról. A parciális differenciálás azt jelenti, hogy több változó, nevezetesen az idő és a három térkoordinátára felbontva történik a differenciálás. Az x, y és z koordinátákkal képzett differenciálhányadosból felépítünk egy vektort, melyet egy skaláris függvényre alkalmazva vektort kapunk, ez a gradiens, illetve röviden a „grad” művelet. Ezt a koordináták szerint differenciáló vektort alkalmazzuk az elektromos és mágneses mező vektoraira, alkalmazva akár a skaláris, akár a vektoriális szorzás szabályait. Skalárszorzatoknál ezt a műveletet nevezik divergenciának, vagy röviden „div műveletnek, amely alkalmas arra, hogy skaláris mennyiséget vektormezővel kapcsoljunk össze. Ez jelenik meg az első és a harmadik egyenletben. A vektoriális szorzat azt jelenti, hogy valamilyen vektort átviszünk egy másik irányba, azaz elforgatunk. Ezt nevezzük rotációnak, vagy „rot műveletnek, amellyel a háromkomponensű differenciáló vektor és az elektromos, illetve mágneses mező vektoriális szorzatát definiáljuk. A négy Maxwell egyenlet a következő:

A fény elektrodinamikai értelmezése

Vákuumban, ahol nincsenek töltések és áramok, a második és negyedik egyenlet azonos szerkezetű, az egyik azt írja le, hogy a mágneses mező változása maga körül elektromos mezőt indukál, míg a másiknál az elektromos mező változása hoz létre maga körül mágneses mezőt. A két egyenlet összekapcsolása a hullámegyenlet, melynek megoldása a fénysebességgel haladó periodikus hullám, amely pontosan megfelel a fény huygensi definíciójának. A Maxwell egyenletek alapján tehát a fényt elektromágneses sugárzásként lehet értelmezni, amely elszakad forrásától, a töltéstől, és önálló létezést nyer. A fény hullámtermészetének ez a felfogása egyúttal megfelel a relativitáselmélet kiindulópontjának is, mert a mágneses és elektromos mező kapcsolatát az inercia rendszertől független állandó határozza meg, a c konstans.

Az elektromágneses sugárzás tehát létezik vákuumban, de hogyan jön létre, hogyan kerül oda? Erre ad választ az első és negyedik egyenletben szereplő töltés- és áramsűrűség. Az egyenletek megoldása szerint a töltés sebességének megváltozása, tehát a töltés gyorsulása hozza létre az elektromágneses sugárzást. Mivel a klasszikus elektrodinamikában a töltés bármilyen kicsi lehet, így a töltés sebességének változását mindig elektromágneses sugárzás kibocsátása kíséri, és a sugárzás intenzitása is bármilyen kicsi lehet.

A Maxwell egyenletek megfogalmazásakor még a töltést az anyag specifikus tulajdonságának tekintették, az elektron, a proton és a többi töltött részecske felfedezése csak később történt meg. Emiatt nem merült fel, hogy a töltésnek lenne legkisebb egysége, amely már nem osztható tovább. Az elemi töltéssel rendelkező részecskék felfedezése viszont konkretizálta a fény forrását, amit a részecskékhez, mindenekelőtt az elektronokhoz lehet rendelni. Innen indulhat el a fény oda, ahol már nincs töltés, ahol már a hullámtulajdonság érvényesül. Amikor viszont eljutottunk annak felfedezéséhez, hogy a töltésnek van elemi egysége, az elemi töltés, azaz a töltés kvantumos, már közeledett a fizika ahhoz a felismeréshez, amit végül Planck a fekete test sugárzásának értelmezésével megtett, kimondva, hogy a fény is kvantumos, amelynek legkisebb egysége a foton. A töltés kvantáltsága szükséges feltétel a fény kvantáltságához, de önmagában még nem elégendő, mert a sebességváltozás mértéke a klasszikus mechanikában tetszőlegesen kicsi lehet a folytonossági elv miatt.

Potenciális energia az elektrodinamikában

A Maxwell egyenletek összefüggései a differenciálhányadosokra épülnek rá, ezáltal a formalizmus a kvantummechanika előképei is, amelyben az energiát és az impulzust szintén differenciálhányadosok képviselik. A mozgásegyenletek az energiamegmaradás elvén alapulnak, ezért az elektrodinamikában is meg kell adni az elektromos és mágneses mező kapcsolatát a potenciális energiával. Hasonlóan a mechanikához, ahol a potenciális energia térfüggéséből lehet származtatni az erőt, felírhatunk két potenciált, a V(r) skalárpotenciált, amely az elektromos mezőt, az A(r) vektorpotenciált, amely a mágneses mezőt definiálja a vektoralgebrai grad ill. rot differenciálhányadosok által. A potenciális energiát a potenciálok és a töltés szorzata adja meg. Ezek a függvények által definiált potenciálok lépnek fel mind a Schrödinger, mind a relativisztikus Dirac egyenletben. Bár csak a kinetikus energiát építjük fel operátorral, indirekt módon a potenciális energia számításában is szerepet kap az állapotfüggvény. A potenciális energiát az r pozíció függvényében adjuk meg, de stacionárius állapotban az r(t) pályafüggvényt nem ismerjük, ezért csak a w(r) valószínűségi eloszlásról beszélhetünk, amit az állapotfüggvény határoz meg. Az állapotfüggvény határozza meg a várhatóértéket, amit megfeleltethetünk a klasszikus V(r) és A(r) potenciáloknak, viszont a valószínűségi eloszlás együtt jár a várhatóértéktől való eltérés lehetőségével is. Ennek juttat majd szerepet a kvantummechanika mezőelmélete, a QED.

A kvantumelektrodinamika szemléletmódja

Az elektromágneses potenciálok kvantumelv szerinti származtatását a QED, oldja meg. A QED szemléletmódja különbözik a klasszikus kvantumelmélettől. Amíg az eredeti kvantummechanika a stacionárius állapotok meghatározására koncentrál, és az állapotfüggvények segítségével utólag számítja ki a kibocsátott és elnyelt fotonok energiáját és az ugrás valószínűségét, a mezőelméletben megfordul a sorrend, ebben az ugrás a kiindulópont. A módszer egyaránt számba veszi az elektronok és fotonok lehetséges állapotait, melyeket azok betöltési számával jellemez. Ezek a betöltési számok lesznek az új kvantumszámok, amiért a módszert második kvantálásnak is nevezik. Az ugrások leírása érdekében új operátorok is fellépnek a formalizmusban, amelyek vagy csökkentik (annihiláció), vagy növelik (kreáció) a betöltési számokat. Az elektronok és fotonok állapotát harmonikus oszcillátorok képviselik, melyben a részecskék spinje is szerepel, ez 1 a fotonnál és ½ az elektronnál. A kibocsátó töltés előjele határozza meg a foton polarizációs előjelét. Ez az előjel jelenik meg a foton impulzusának irányában is, amely a kölcsönhatásban lévő töltést ellökheti, vagy húzhatja a másik töltés felé. Szemléletesen úgy is elképzelhetjük a vonzó és taszító hatást, hogy a töltések közötti tartományban azonos polarizáció esetén feldúsulnak a virtuális fotonok, ellentétes esetben viszont ritkulni fognak. (Hasonló elv alapján a fénysebességű forgásokkal is felépíthető a mezőelmélet, amelyben egy- illetve kéttengelyű forgások szerepelnek oszcillátorok helyett, a kétféle spint fotonok és elektronok számára a forgástengelyek száma határozza meg, a polarizációs előjelet pedig a forgás sodrásiránya adja meg).

Az ugrást két állapot között úgy írja le a mezőelmélet, hogy az egyik elektron állapot megszűnik, a másik létrejön, miközben attól függően, hogy abszorpcióról, vagy emisszióról van-e szó, egy foton állapot is létrejön, vagy megszűnik. Ebben a szemléletmódban az elektronok és fotonok egyaránt aktív szerepet kapnak. A mezőelmélet arra is keresi a választ, hogy a tér két különböző pontján lévő elektromos töltés hogyan kerül kölcsönhatásba, és miért van retardáció (késlekedés) a kölcsönhatás megvalósulásában. Ennek okát a töltések által kibocsátott és elnyelt virtuális fotonokra vezeti vissza. Ezek a fotonok nem hoznak létre megfigyelhető változást az elektron állapotában, csak közvetítik az erőhatást, azaz létrehozzák az elektromos és a mágneses mezőt. Mivel ezek a fotonok nem figyelhetők meg közvetlenül, a szakirodalom virtuálisnak nevezi ezeket a részecskéket. 

A virtuális fotonok ugyanabból az okból jelennek meg a mezőelméletben, mint a stacionárius pályák fogalma az atomokban. A stacionárius pályákat nem láthatjuk, csak az ugrásokat két pálya között, ez vonatkozik az elektromágneses mezőre is, amely szintén nem látható közvetlenül, csak az általa mozgatott töltések megfigyelésével szerzünk tudomást róla. Ezt a láthatatlan mezőt építik fel a szintén láthatatlan virtuális fotonok, ami az elektrodinamika kvantumelméletében a valószínűség még mélyebb szintjéhez vezet. Ebben az értelemben mondhatjuk, hogy a mezőelméletben már a valószínűség valószínűségéről van szó.

Lamb shift és az elektron anomális mágneses momentuma

Bár Dirac a mezőelmélet alapjait már korábban lerakta, ez sokáig nem keltett komolyabb figyelmet az elméleti fizikusok között. Ennek az volt az oka, hogy a relativisztikus kvantummechanika kielégítő pontossággal írta le a kísérleti eredményeket. Később azonban a mérési pontosság növekedésének köszönhetően két olyan jelenségre derült fény, amit az elmélet már nem tudott magyarázni. Az egyik a Lamb shift. Hidrogén atomban különböző kvantumszám kombinációk azonos energiaértékkel rendelkeznek a számítások szerint. Lamb azonban kimutatta, hogy az elméleti egyezés ellenére is különböznek az energianívók. A másik az elektron anomális mágneses dipólus momentuma. Amint már szó volt róla, mágneses monopólus nem létezik a harmadik Maxwell egyenlet értelmében, viszont a negyedig egyenlet szerint köráram jelenlétében mágneses dipólus keletkezik. Ennek felel meg, hogy az atomi elektronok pályamozgása, amit az impulzusnyomaték jellemez, létrehozza a μ = μBL mágneses dipólust, ahol μB =/2m a Bohr magneton. Ez az összefüggés származtatható a klasszikus elektrodinamika alapján is. Az elektron Dirac elmélete viszont behoz egy új elemet, mely szerint az elektron rendelkezik saját impulzusnyomatékkal is, amit az S = ½ spin jellemez, amihez szintén járul mágneses nyomaték, kiegészítve a pályamozgás által létrehozott mágneses dipólus momentumot:

μ = μB(L +2S)

A spin előtti 2-es faktor a Dirac egyenlet hozadéka, ami viszont már nem értelmezhető a klasszikus fizika keretein belül. (A fénysebességű forgás koncepciója kézenfekvő magyarázatot ad a 2-es faktor eredetére, ami a kéttengelyű forgásból fakad. Ez ugyanis felezi a spint, viszont a mágneses momentum nem feleződik, mert azt egytengelyű forgás, a Larmor precesszió hozza létre).

Mi a kvantumfluktuáció?

Az elektron mágneses momentuma azonban nagyobb, mint ami a Dirac egyenletből következik, mégpedig μ = 2,0023 μBS. Ennek értelmezését oldotta meg a kvantumelektrodinamika elmélete, amely szerint a növekedést a kvantumfluktuáció okozza. Ez alatt azt kell érteni, hogy a virtuális foton kibocsátása, illetve elnyelése az elektron pozícióját állandó „rázkódásban” tarja, fluktuációt okoz. Az átlagos pozíció adja meg a szokásos potenciális energiát, de dinamikai jelenségekben a finomabb közelítések már az átlagtól való eltérés hatását is figyelembe veszik. A Larmor precesszió is dinamikai jelenség, amelyből a mágneses momentum meghatározható. Ha a klasszikus elektrodinamika alapján értelmezzük a mágneses momentumot, az arányos a töltés által a mozgás során körbezárt területtel, ez pedig megnövekszik a fluktuáció következtében.

Perturbációs eljárás a QED elméletben

A fluktuáció becsléséhez abból lehet kiindulni, hogy a virtuális fotonok kibocsátásának és elnyelésének intenzitása határozza meg az elektromágneses kölcsönhatás mértékét, amit az e2 = αħc összefüggésből származó elemi töltés nagysága jellemez. Itt α = 1/137 a Sommerfeld állandó, az elektromágneses kölcsönhatás csatolási együtthatója. (A fénysebességű forgások koncepciójában a belső kettősforgások Coriolis ereje bocsátja ki a virtuális fotonoknak megfelelő egytengelyű forgásokat). A fluktuáció mértéke arányos a virtuális fotonok intenzitásával, ami a Sommerfeld állandónak felel meg. Ezt szemlélteti körmozgás esetén a töltés által körbejárt területet 1+ α/2π mértékű növekedése, és az evvel járó momentumnövekedés. Ez már jó közelítésben egyezést ad a megfigyelt kísérleti értékkel. A QED elmélet számításai azonban nem ezt a szemléletes utat követik, hanem közelítő megoldást adnak a mezőelmélet által felépített egyenletekre. A módszer alapja az időtől függő perturbáció számítás. Ennek lényege, hogy először elhagyjuk az egyenletből azt a tagot, amely miatt a számítás nem végezhető el explicit módon. Ez jogos módszer, ha ez a tag kicsi. A megoldásként nyert állapotfüggvény alapján az elhagyott tag nagysága megbecsülhető, majd a következő közelítésben ezt korrekcióba lehet venni. A tovább finomított állapotfüggvény már pontosított becslést az eredetileg elhagyott tagra, amiért tovább lehet javítani a megoldás pontosságát. Ez az eljárás már rendkívül pontos értéket ad az anomális mágneses momentumra, amely tizenkét tizedesig egyezik a kísérleti értékkel.

Van-e fizikai tartalma a matematikai közelítés egyes lépéseinek?

Az egymást követő perturbációs lépések szükségessé tesznek különböző virtuális folyamatokat, melyeket Richard Feynman diagramjai szemléletes formában írnak le. Ezek között a józanész számára meghökkentő lépések is vannak. Példaként előfordulnak a fénysebességet meghaladó, vagy időben visszafelé mutató folyamatok is. Feynman meg is jegyzi könyvében (QED. The strange theory of light and matter), hogy ezek összebékítésére a józanésszel, kár is törekedni. Magam ezt másképp fogalmazom meg. Ugyanis a „furcsa” tagok fellépése a matematikai közelítés szükségszerű velejárója. Az időfüggő közelítő eljárás egyes lépéseiben előre futhatunk, ilyenkor a következő közelítésnél vissza kell lépni az időben, máskor viszont lemaradunk, amiért olyan tag lép fel a számításban, amelyik meghaladja a fény sebességét is. A számítás egyes lépései csupán matematikai közelítési eszközök, melyeknek nincs közük a realitáshoz. A lényeg csupán a számítás végeredménye, amelynek már valódi fizikai tartalma van. A másik megjegyzés pedig arra vonatkozik, hogy amikor virtuális folyamatokról van szó, akkor a valószínűség birodalmában járunk, ahol az utakat nem a részecske járja be, hanem a képzeletünk, midőn sorra vesszük a lehetőségeket. A lehetséges pályák valószínűségi összege pedig nem azt jelenti, hogy a részecske párhuzamosan több pályát is futna be egyidejűleg, hanem azt, hogy az okok számbavételénél több lehetőség is felmerül.

Szingularitás a QED számításokban

Van viszont a QED számításoknak egy csúnya szépséghibája, mert a sajátenergia számítás első perturbációja végtelent ad. Ezt mesterségesen próbálják kiküszöbölni, amikor a tömeget és a töltést önkényesen renormalizálják. Jobb ennél a szingularitást tudomásul venni, mert ennek oka – ahogy azt korábban előrevetítettük – a mezőfogalom definíciójában rejlik, amely elkerülhetetlen paradoxont hordoz magában. (A fénysebességű forgások koncepciója viszont segít a végtelen kiküszöbölésében, mert véges határt ad meg, ameddig érvényes a potenciálszámítás kifejezése, és ezért nem jön létre végtelen járulék.)

Az anyag hullámtermészete

Az elektrodinamika mezőelméletének elveit megismerve kezdhetünk hozzá a bevezetésben felvetett kérdés megválaszolásához: hogyan is értelmezhetjük az anyag kettős természetét, amely nem csak a foton tulajdonsága, hanem elvben bármelyik részecskéé, atomé és molekuláé.

De Broglie vetette fel, hogy minden részecskének van hullámtermészete is, ami az impulzushoz kapcsolódik és a hullámhosszal jellemezhető:

λ = h/p

Foton esetén ez abból következik, hogy az impulzus arányos az energiával a p = E/c = h·f/c = h/λ összefüggés szerint. Elektronok esetén Davisson és Germer nikkel egykristályon végzett diffrakciós kísérlete adta meg a bizonyítékot a hipotézisre.  A kristályban egymástól d távolságra atomokból felépülő síkok vannak, és amikor egy λ hullámhosszú sugárzás éri a felületet θ szögben, akkor diffrakciós maximum figyelhető meg a Bragg formula szerint (William Henry Bragg, 1862-1942 és Lawrence Bragg, 1890-1971, apa és fia, akik 1915-ben együtt lettek Nobel díjasok):

k λ = 2dsinθ,

ahol k = 1, 2, 3, …. egészszám.

A diffrakciós maximum oka, hogy az alsó síkból visszaverődő fény hosszabb utat tesz meg, és amikor az úthossz különbség a hullámhossz egész számú többszöröse a hullámok erősítik egymást, a többi irányban viszont kioltódnak.

Davisson és Germer nem a fönti elrendezést választotta, ahol a beeső sugárzás szöge változik, hanem a nikkel kristálylap síkjára merőlegesen érkező elektronok visszaverődését tanulmányozta különböző irányokban.  Ebben az esetben a diffrakciós maximum szögét a módosított Bragg törvény adja meg:

k λ = 2dsin(90 - θ/2)

Az elektronokat elektromos térben felgyorsították, így változtatva az impulzust, és azt tapasztalták, hogy 50 fokos visszaverődési szögnél a gyorsító feszültséget változtatva jelentős maximum figyelhető meg 54 V értéknél.  A nikkel egykristály rácstávolsága (d = 0,92x10-10m) és az 54 eV energiához tartozó impulzus alapján épp akkora hullámhossz adódott ki, ami a de Broglie hipotézisnek megfelelt. Később protonokkal, egyes kisebb atomokkal és molekulákkal is sikerült bizonyítani a hipotézis helyességét.

Rugalmas szórás és a fény lassulása optikai közegekben

A fenti kísérlet a rugalmasan szóródó elektronok megfigyelésén alapul. Bármely kölcsönhatást, akkor tekintünk rugalmasnak, ha annak során impulzusátadás megy végbe, anélkül, hogy közben megváltozna a komponensek energiája. Tegyünk egy kitérőt, annak érdekében, hogy lássuk fotonok esetén a rugalmas ütközés hatását. Erre példa, amikor a fény belép valamilyen optikailag sűrűbb közegbe, ahol a törésmutató mértékében lecsökken a sebessége:

cn = c/n,

ahol n a törésmutató. Amikor a fény az optikailag sűrűbb közegbe jut, például belép a vízbe, vagy üvegbe, ott a határréteg atomjaival, illetve elektronjaival kerül kölcsönhatásba. Ez a kölcsönhatás rugalmas, hiszen a nagyobb törésmutatójú közegben sem változik meg a fény színe, azaz a foton nem ad le energiát.  A lassulás oka, hogy lerövidül a hullámhossz, λn = λ/n, és így a sebesség cn = 2πλn kisebb lesz. Mivel a foton impulzusát a h/λ arány adja meg, így az impulzus megnövekszik a törésmutató mértékében:

pn = n·p

Következésképpen, optikai közegekben a fény lassabb haladása a megnövelt impulzusnak tulajdonítható.

A relativitáselmélet szerint fizikai közegekben a fény sebessége nem növekedhet meg a vákuumhoz képest, ami azt jelenti, hogy a töltésekkel kölcsönhatásba lépő fény a közeg atomjaitól kizárólag felveheti az impulzust, de azt nem adhatja át rugalmas kölcsönhatások esetén. Ha ugyanis is átadná és csökkenne saját impulzusa, akkor növekedne a hullámhossz, amiért a sebesség meghaladná a vákuumban elérhető maximális c értéket. Megfordul a helyzet, ha a kölcsönhatás nem rugalmas, mert ekkor az impulzusátadás egyúttal energia, azaz frekvenciacsökkenéssel jár együtt, oly módon, hogy a hullámhossz és a frekvencia szorzata már nem lesz nagyobb a c értéknél. Az impulzusnövekedés a sugárzás és anyag közötti kölcsönhatás tartományára korlátozódik, azon kívül nem lép fel, amiért gázokban a törésmutató növekedése a koncentrációval arányos. Sűrű, kondenzált közegekben a sugárzás eredeti impulzusa több mint duplájára nőhet, ezért néhány kristályban n értéke kettő fölé is mehet (Például germániumban n = 4,05). Az impulzus összegzési szabálya szerint ez úgy történhet meg, ha az első atommal való kölcsönhatás tartományán belül további atomokkal is létrejön a kölcsönhatás.

Mezőelméleti szempontból vizsgálva a jelenséget, az optikai közeg elektronjai virtuális fotonok kibocsátásával lépnek kölcsönhatásba a beérkező fénnyel, amelynek során a közeg által kibocsátott fotonok szuperponálódnak a kívülről érkező fotonokkal. Mivel minden foton impulzussal is rendelkezik, ez lehetővé teszi az impulzusátadást. Ez az impulzusátadás azonban egyirányú, a valódi foton úgy változtatja meg a virtuális fotonok állapotát, hogy saját impulzusa növekszik a virtuális fotonok, illetve az ezeket kibocsátó töltésrendszer rovására. Úgy is fogalmazhatunk, hogy a fény valamilyen anyagi közeggel rugalmas kölcsönhatásba kerülve, azt maga felé húzza. Viszont rugalmatlan kölcsönhatás esetén arra nyomást gyakorol, ez a fénynyomás.

A későbbiek szempontjából fontos tanulság, hogy fotonok szuperpozíciója olyan folyamat, amely energiacsere nélküli impulzusátadást eredményez. A rugalmas kölcsönhatásban részt vevő fotonok szükségképpen virtuálisak, a megfigyeléshez ugyanis energiaváltozás is szükséges.

Elektron diffrakciója kristályokban

Visszatérve az elektron diffrakcióhoz, először azt kell megvizsgálni, hogy amikor az elektron ütközik a kristályráccsal, milyen folyamat játszódik le, és milyen kölcsönhatás lép fel ennek során? A kristály úgy viselkedik, mint egy tükör, amelyet a rendezett atomok elektronjainak potenciáltere hoz létre. A beérkező elektronok kölcsönhatásba kerülnek a szinuszosan változó potenciállal, ahonnan különböző irányban pattanhatnak vissza. Az irányváltozás impulzusváltozást jelent, amelynek hátterét a kristály egésze biztosítja, de annak nagy tömege miatt az elmozdulás olyan kicsi, hogy kísérletileg nem észlelhető. A mezőelmélet szerint az elektron és a rácsatomok által létrehozott potenciál kölcsönhatását virtuális fotonok közvetítik. A „támadó” elektront virtuális fotonok serege veszi körül, amely megütközik a kristály rendezett sorokban álló elektronjainak foton seregével. A csata addig tart, amíg a védekező fotonok serege nem állítja meg és taszítja el valamilyen irányban a támadó elektront. A két tábor fotonjai közül azok vesznek részt a harcban, amelyek frekvenciája megegyezik. A frekvencia egyezése ellenére az érkező elektron fotonjai többlet impulzussal rendelkeznek. Amikor elektromos feszültséggel gyorsítjuk az elektront, létrehozunk egy olyan töltéseloszlást, amely vonzó hatást gyakorol az elektronra. Ez a vonzó hatás a töltések által kibocsátott és elnyelt virtuális fotonok szuperpozíciója által jön létre, de azt is meg kell említeni, hogy az elektron felgyorsítása valódi fotonok képződésével is együtt jár.

A diffrakciós kísérlet már a gyorsítási szakasz után következik be, ahol megszűnik a megfigyelhető fotonok képződése. Ebben a tartományban többlet impulzussal mozognak a virtuális fotonok, igazodva az elektron impulzusához  A többlet impulzus miatt pedig megváltozik a szuperpozíciós struktúra az elektronból és a kristályból kilépő virtuális fotonok között. A struktúra változásában játszik szerepet, hogyan szuperponálódnak a virtuális fotonok, amelyek a kristályrács egymás mögötti pozícióiból indulnak. Teljesülni kell a rugalmassági feltételnek, mely szerint a visszalökött elektron impulzusa abszolút értékben változatlan marad. Ennek megvalósításához a rács két fotonjának „együttműködése” szükséges, megkövetelve, hogy az egymás mögötti síkokból érkező fotonok fázisa megegyezzen. Ez a fázis követelmény csak bizonyos szögek esetén teljesül, amely meghatározza, hogy milyen irányban fog kilökődni az elektron. Az imént részletezett mechanizmus lényegét úgy foglalhatjuk össze, hogy ugyanolyan játékszabályok játszanak szerepet elektron diffrakció esetén az interferencia létrehozásában, mint amikor elektromágneses sugárzás éri a kristályrácsot a röntgen diffrakció során.

A fénysebesség állandósága

Érdemes még kitérni a relativitás kiinduló elvére, amely szerint vákuumban a fénysebesség állandó. A diffrakciós kísérletben vákuumra van szükség, hogy az elektronok ne szóródjanak a kristály elérése előtt is. Hogyan egyeztethető össze a fénysebesség állandóságának törvényével, hogy a p = m·v impulzusú elektron által kibocsátott virtuális fotonoknak lerövidül a hullámhossza és ezáltal lecsökken a sebességük? Amikor az elektron impulzusáról beszélünk, akkor hallgatólagosan a laboratóriumi, azaz a nikkel egykristály inercia rendszerében gondolkozunk. Ebből a rendszerből nézve a mozgó elektron által kibocsátott virtuális fotonok impulzusa p = m·v értékkel megnövekszik, és hasonlóan az optikai kötegbe belépő fényhez, a sebesség lecsökken:

cel,foton = cvákuumv = cvákuump/m

Ez a változás látszólagos, abban az értelemben, hogy az elektron saját rendszerében semmi nem változik, a mozgó elektron impulzusának csak akkor van szerepe, amikor létrejön az elektron és a nikkelrács közötti kölcsönhatás.  A kölcsönhatás terjedési sebessége szempontjából is látszólagos a jelenség, mert az elektron v sebességét hozzá adva a virtuális fotonok csökkent sebességéhez, visszakapjuk a vákuumbeli fénysebességet, azaz nem kerülünk szembe avval az elvvel, amely megköveteli, hogy az elektromágneses kölcsönhatási sebesség ne függjön a mozgó objektum sebességétől. Valójában arról van szó, hogy a kibocsátó objektum fotonjainak terjedési sebessége látszólagosan megváltozik egy másik inercia rendszerből nézve, és éppen ez biztosítja, hogy a tényleges kölcsönhatás (információtovábbítás) sebessége független legyen a két inercia rendszer egymáshoz képesti sebességétől. A látszólagos jelleget hangsúlyozni kell, hiszen a virtuális fotonok sebességváltozása nem mérési adat, evvel szemben, amit mérésekkel ellenőrizhetünk, hogy mennyi idő kell a kölcsönhatás közvetítéséhez két mozgó objektum között. Ez utóbbira elvi lehetőséget ad, hogy ha gyorsítjuk az elektront, akkor detektálható, tehát valódi fotonokat is kibocsát.

(Az előzőekben nem a relativitáselmélet sebesség összeadási szabályait alkalmaztuk, amit az indokol, hogy a Davisson-Germer kísérletben az elektron sebessége nem haladja meg c századrészét, és így a kísérleti pontosság határain belül alkalmazni lehet az impulzus p = m·v formuláját és a sebességek vektoriális összeadási szabályát.)

Mit kell érteni az anyag hullámtermészetén?

A részecskék, vagy elterjedt megfogalmazásban az „anyag” hullámtermészete a kölcsönhatás jellegéből fakad, ebben a fotonok közvetítő szerepe jelenik meg, mint anyagi tulajdonság. Amit látunk, amit észlelünk az a részecske jelleg, de amikor értelmezzük a jelenség hátterét, a hullámképhez jutunk a valószínűség összegzési szabályai által. Magyarázatunk ésszerű és konzekvens, de mégis csak gondolati termék, a valóság olyan lenyomata, amit a foton mutat meg nekünk rajta hagyva saját bélyegét.

Davisson és Germer kísérletének fő jelentősége, hogy bizonyítékot ad a mezőelmélet virtuális fotonokra alapított koncepciójának helyességére. A virtuális foton a mozgató erő, a megfigyelhető foton a mozgási állapot változásának indikátora.

Linkek a korábbi bejegyzésekhez

süti beállítások módosítása