Bevezetés
Az előző írásban a mikrovilág törvényeit kíséreltük meg úgy bemutatni, hogy elfogadható legyen a józanész számra is, ennek útja a fogalmi rendszer hozzáigazítása volt a számunkra elérhető információhoz. Kulcskérdés volt a mozgási pálya helyett a mozgási állapot fogalmát bevezetni, amelyben a valószínűség összekapcsolódik a determinizmussal. A kvantummechanika a valószínűségen keresztül enged betekintést a mikrovilágba, ennek megjelenése nem az alkalmazott matematikai formalizmus következménye, amely operátorokat rendel az egyes fizikai mennyiségekhez, hanem szükségszerűen következik abból, hogy olyan mozgásokat írunk le, amely nem látható közvetlenül, amire csak becsléseket tehetünk. Ez új megvilágításba helyezi az anyag kettős természetére vonatkozó felfogást, amelyben szemléletünk kettőssége tükröződik: részecskeként értelmezzük a közvetlenül megfigyelhető fotont, amely valahol ugrást idéz elő két állapotot között, de hullámként jellemezhető valószínűségi leírást adunk az ugrást megelőző állapotra. A valószínűségi leírás és ebből fakadóan a hullámtermészet, gondolati konstrukció, amely nem tévesztendő össze a megfigyelt valósággal, ahol kötöttebbek a szabályok a gondolat által megengedett utakhoz képest. Felmerül viszont a kérdés, hová tegyük de Broglie korszakalkotó felismerését, amely minden részecskének hullámtermészetet is tulajdonít, és amely elképzelés Davisson (Clinton Davisson, 1881—1958, Nobel díj: 1937) és Germer (Lester Germer, 1896-1971) méréseivel alátámasztást is nyert? A válaszhoz tovább kell lépni a kvantummechanika elméletében, és szemügyre venni annak mélyebb változatát, amit mezőelméletnek, illetve második kvantálásnak is neveznek. A módszer matematikája messzire vezet, nem is célunk annak ismertetése, e helyett az elmélet fizikai tartalmára fokuszálunk, melynek összebékítése a józanésszel nagyobb kihívást jelent, mint amivel a hagyományos kvantummechanika fogalmi rendszerének bemutatásánál találkoztunk.
Klasszikus elektrodinamika
Az elektrodinamikai mezőelmélet fogalmi rendszerének ismertetése előtt fussunk végig vázlatosan a klasszikus elmélet fontosabb fogalmain. Kiindulópont a töltés fogalma, ezt tekintjük az elektromos erő forrásának, amely a távolság négyzetével fordítottan arányos
FCoulomb = q1·q2/r2
Ha a két töltés előjele megegyezik, akkor taszítás, ha ellentétes, akkor vonzás jön létre a töltések között. Ha egy rendszerben sok töltés van, akkor az erőhatás páronként összegzett tagokra bontható fel, sok töltés esetén ez nehézséget okoz, ami célszerűvé teszi, hogy bevezessük az egész rendszer erőhatásait összegyűjtő elektromos mező fogalmát, melyet az egységnyinek választott töltésre ható erővel definiálunk:
FCoulomb = q·E
Az elektromos mező a qi töltés ri(xi,yi,zi) koordinátákkal jelölt helyén jön létre az rj pontokban lévő qj töltések hatására, ahol az erők vektorokként adódnak össze (itt és a következőkben a háromkomponensű vektorokat vastag betűk jelzik), az i és j pontokat összekötő vektorok irányát az εij egységvektor jelöli:
Borbély paradoxon
A fenti összegzés azonban csapdát rejt magában! Az elektromos mező fenti definíciója ugyanis paradoxonhoz vezet, amit nevezhetünk borbély paradoxonnak.
A katonaságnál napi parancsba adják, hogy másnapra mindenki legyen megborotválva. Aki tud borotválkozni, azt maga végezze el, aki nem tud, azt a borbély fogja megborotválni. A parancs azt is tartalmazza, hogy a borbélynak csak azokat szabad megborotválni, akik ezt maguk nem tudják megtenni. A paradoxon onnan származik, hogy mit tegyen a borbély saját magával? Ha nem borotválkozik meg, akkor a parancs első részét szegi meg, ha viszont megborotválkozik, akkor a második részét, hiszen ő tud borotválkozni. Paradoxon olyankor jöhet létre, amikor van a csoportnak egy kiemelt tagja, aki, vagy ami, valamilyen műveletet végezhet a többiekkel, és ezt a műveletet önmagára is alkalmazni kell.
A mező definíciója megköveteli, hogy abban szerepeljen az összes töltés hatása, és érvényes legyen a teljes tértartományban. Mivel nem zárhatunk ki egyetlen töltést sem, így a mező hatása megjelenik a mezőt építő minden töltésen, noha a mezőt definiáló Coulomb erőnek csak két különböző töltés között van értelme. A mező definíciójának ez az ellentmondása okoz majd problémát a részecskék saját energiájának számításában, ahol végtelenül nagy érték jelenik meg.
Lorentz erő
A töltések mozgást is végeznek, amely miatt kialakul egy másodlagos erő, amit a B mágneses mezővel jellemzünk. Ennek oka, hogy az erő terjedéséhez idő kell, amiért az erő iránya és nagysága „késve” követi a töltés mozgását. Ennek mértékét a Δt = rij/c retardációs idő adja meg, ahol c a fénysebesség, amely az elektromos erő terjedési sebessége. A két töltés között ható erő a korábbi helyzethez igazodik, ahol a tényleges helyzettől való lemaradás távolsága a töltés v mozgási sebességétől függ: vΔt = rijv/c. Ha a töltés nem a vele kölcsönhatásban lévő másik töltés irányában mozog, akkor az új r’ij vektor iránya is más lesz. Emiatt az F erő két komponensre bontható fel, ahol az elektromos mező mutat a két töltés pillanatnyi helyzetét összekötő egyenes irányába. A másik komponens nagysága megfelel a Lorentz erő mágneses komponensének, de iránya nem v-vel párhuzamos, hanem arra merőleges. Ennek magyarázatát az adja, hogy az elektromos kölcsönhatást a közvetítő fotonok impulzusa, míg a mágneses hatást a fotonok impulzusnyomatéka idézi elő. Az így definiált B mező jelenik meg a Lorentz erő kifejezésében:
FLorentz = q(E + vxB)
Bevezethető még a J = q·v elektromos áram fogalma is. Az áram a klasszikus pályafogalomhoz kapcsolódik, ahol ismertnek tételezzünk fel a töltés pályáját is. Szintén a klasszikus felfogásnak felel meg, hogy a töltésnek nincs legkisebb egysége, elvben tetszőlegesen kicsi lehet. Emiatt lehet bevezetni a térfogategységre jutó töltésmennyiséget, a ρ(r) töltéssűrűséget, és hasonlóan beszélhetünk a j(r) áramsűrűségről is.
Maxwell egyenletek
Az elektrodinamika elektromos és mágneses mezőjének egymáshoz képesti kapcsolatát, illetve a töltés- és áramsűrűségből való felépülését négy parciális differenciálegyenlet írja le, ezek a Maxwell egyenletek.
A Maxwell egyenletekről túlzás nélkül elmondhatjuk, hogy a klasszikus fizika csúcspontját képviselik, amely egyrészt választ ad a fény eredetére, másrészt csírájában már ott van benne a relativitáselmélet, és megalapozza a kvantummechanika hullám és részecske kettősségét is.
Az első egyenlet adja meg az elektromos mező forrását, ami a töltéssűrűségtől származik. Ez az egyenlet a Coulomb törvénynek felel meg. A második törvény a mágneses mező időbeli változása által létrehozott elektromos mezőt adja meg, amely ennek hatására körülveszi a mágneses mezőt. A harmadik egyenlet azt fejezi ki, hogy a mágneses mezőnek nincs a töltéssel analóg forrása, ezt úgy is mondják, hogy nem létezik mágneses monopólus. Az utolsó egyenlet összetettebb, amely azt fejezi ki, hogy mágneses mezőnek két forrása is van, az egyik az elektromos mező változása, a másik az áramsűrűségtől származik, a képződő mágneses mező körülveszi az elektromos mezőt, illetve az áramot.
Vektoralgebrai differenciálok
Néhány szót az egyenletekben szereplő matematikai szimbólumokról. A parciális differenciálás azt jelenti, hogy több változó, nevezetesen az idő és a három térkoordinátára felbontva történik a differenciálás. Az x, y és z koordinátákkal képzett differenciálhányadosból felépítünk egy vektort, melyet egy skaláris függvényre alkalmazva vektort kapunk, ez a gradiens, illetve röviden a „grad” művelet. Ezt a koordináták szerint differenciáló vektort alkalmazzuk az elektromos és mágneses mező vektoraira, alkalmazva akár a skaláris, akár a vektoriális szorzás szabályait. Skalárszorzatoknál ezt a műveletet nevezik divergenciának, vagy röviden „div” műveletnek, amely alkalmas arra, hogy skaláris mennyiséget vektormezővel kapcsoljunk össze. Ez jelenik meg az első és a harmadik egyenletben. A vektoriális szorzat azt jelenti, hogy valamilyen vektort átviszünk egy másik irányba, azaz elforgatunk. Ezt nevezzük rotációnak, vagy „rot” műveletnek, amellyel a háromkomponensű differenciáló vektor és az elektromos, illetve mágneses mező vektoriális szorzatát definiáljuk. A négy Maxwell egyenlet a következő:
A fény elektrodinamikai értelmezése
Vákuumban, ahol nincsenek töltések és áramok, a második és negyedik egyenlet azonos szerkezetű, az egyik azt írja le, hogy a mágneses mező változása maga körül elektromos mezőt indukál, míg a másiknál az elektromos mező változása hoz létre maga körül mágneses mezőt. A két egyenlet összekapcsolása a hullámegyenlet, melynek megoldása a fénysebességgel haladó periodikus hullám, amely pontosan megfelel a fény huygensi definíciójának. A Maxwell egyenletek alapján tehát a fényt elektromágneses sugárzásként lehet értelmezni, amely elszakad forrásától, a töltéstől, és önálló létezést nyer. A fény hullámtermészetének ez a felfogása egyúttal megfelel a relativitáselmélet kiindulópontjának is, mert a mágneses és elektromos mező kapcsolatát az inercia rendszertől független állandó határozza meg, a c konstans.
Az elektromágneses sugárzás tehát létezik vákuumban, de hogyan jön létre, hogyan kerül oda? Erre ad választ az első és negyedik egyenletben szereplő töltés- és áramsűrűség. Az egyenletek megoldása szerint a töltés sebességének megváltozása, tehát a töltés gyorsulása hozza létre az elektromágneses sugárzást. Mivel a klasszikus elektrodinamikában a töltés bármilyen kicsi lehet, így a töltés sebességének változását mindig elektromágneses sugárzás kibocsátása kíséri, és a sugárzás intenzitása is bármilyen kicsi lehet.
A Maxwell egyenletek megfogalmazásakor még a töltést az anyag specifikus tulajdonságának tekintették, az elektron, a proton és a többi töltött részecske felfedezése csak később történt meg. Emiatt nem merült fel, hogy a töltésnek lenne legkisebb egysége, amely már nem osztható tovább. Az elemi töltéssel rendelkező részecskék felfedezése viszont konkretizálta a fény forrását, amit a részecskékhez, mindenekelőtt az elektronokhoz lehet rendelni. Innen indulhat el a fény oda, ahol már nincs töltés, ahol már a hullámtulajdonság érvényesül. Amikor viszont eljutottunk annak felfedezéséhez, hogy a töltésnek van elemi egysége, az elemi töltés, azaz a töltés kvantumos, már közeledett a fizika ahhoz a felismeréshez, amit végül Planck a fekete test sugárzásának értelmezésével megtett, kimondva, hogy a fény is kvantumos, amelynek legkisebb egysége a foton. A töltés kvantáltsága szükséges feltétel a fény kvantáltságához, de önmagában még nem elégendő, mert a sebességváltozás mértéke a klasszikus mechanikában tetszőlegesen kicsi lehet a folytonossági elv miatt.
Potenciális energia az elektrodinamikában
A Maxwell egyenletek összefüggései a differenciálhányadosokra épülnek rá, ezáltal a formalizmus a kvantummechanika előképei is, amelyben az energiát és az impulzust szintén differenciálhányadosok képviselik. A mozgásegyenletek az energiamegmaradás elvén alapulnak, ezért az elektrodinamikában is meg kell adni az elektromos és mágneses mező kapcsolatát a potenciális energiával. Hasonlóan a mechanikához, ahol a potenciális energia térfüggéséből lehet származtatni az erőt, felírhatunk két potenciált, a V(r) skalárpotenciált, amely az elektromos mezőt, az A(r) vektorpotenciált, amely a mágneses mezőt definiálja a vektoralgebrai grad ill. rot differenciálhányadosok által. A potenciális energiát a potenciálok és a töltés szorzata adja meg. Ezek a függvények által definiált potenciálok lépnek fel mind a Schrödinger, mind a relativisztikus Dirac egyenletben. Bár csak a kinetikus energiát építjük fel operátorral, indirekt módon a potenciális energia számításában is szerepet kap az állapotfüggvény. A potenciális energiát az r pozíció függvényében adjuk meg, de stacionárius állapotban az r(t) pályafüggvényt nem ismerjük, ezért csak a w(r) valószínűségi eloszlásról beszélhetünk, amit az állapotfüggvény határoz meg. Az állapotfüggvény határozza meg a várhatóértéket, amit megfeleltethetünk a klasszikus V(r) és A(r) potenciáloknak, viszont a valószínűségi eloszlás együtt jár a várhatóértéktől való eltérés lehetőségével is. Ennek juttat majd szerepet a kvantummechanika mezőelmélete, a QED.
A kvantumelektrodinamika szemléletmódja
Az elektromágneses potenciálok kvantumelv szerinti származtatását a QED, oldja meg. A QED szemléletmódja különbözik a klasszikus kvantumelmélettől. Amíg az eredeti kvantummechanika a stacionárius állapotok meghatározására koncentrál, és az állapotfüggvények segítségével utólag számítja ki a kibocsátott és elnyelt fotonok energiáját és az ugrás valószínűségét, a mezőelméletben megfordul a sorrend, ebben az ugrás a kiindulópont. A módszer egyaránt számba veszi az elektronok és fotonok lehetséges állapotait, melyeket azok betöltési számával jellemez. Ezek a betöltési számok lesznek az új kvantumszámok, amiért a módszert második kvantálásnak is nevezik. Az ugrások leírása érdekében új operátorok is fellépnek a formalizmusban, amelyek vagy csökkentik (annihiláció), vagy növelik (kreáció) a betöltési számokat. Az elektronok és fotonok állapotát harmonikus oszcillátorok képviselik, melyben a részecskék spinje is szerepel, ez 1 a fotonnál és ½ az elektronnál. A kibocsátó töltés előjele határozza meg a foton polarizációs előjelét. Ez az előjel jelenik meg a foton impulzusának irányában is, amely a kölcsönhatásban lévő töltést ellökheti, vagy húzhatja a másik töltés felé. Szemléletesen úgy is elképzelhetjük a vonzó és taszító hatást, hogy a töltések közötti tartományban azonos polarizáció esetén feldúsulnak a virtuális fotonok, ellentétes esetben viszont ritkulni fognak. (Hasonló elv alapján a fénysebességű forgásokkal is felépíthető a mezőelmélet, amelyben egy- illetve kéttengelyű forgások szerepelnek oszcillátorok helyett, a kétféle spint fotonok és elektronok számára a forgástengelyek száma határozza meg, a polarizációs előjelet pedig a forgás sodrásiránya adja meg).
Az ugrást két állapot között úgy írja le a mezőelmélet, hogy az egyik elektron állapot megszűnik, a másik létrejön, miközben attól függően, hogy abszorpcióról, vagy emisszióról van-e szó, egy foton állapot is létrejön, vagy megszűnik. Ebben a szemléletmódban az elektronok és fotonok egyaránt aktív szerepet kapnak. A mezőelmélet arra is keresi a választ, hogy a tér két különböző pontján lévő elektromos töltés hogyan kerül kölcsönhatásba, és miért van retardáció (késlekedés) a kölcsönhatás megvalósulásában. Ennek okát a töltések által kibocsátott és elnyelt virtuális fotonokra vezeti vissza. Ezek a fotonok nem hoznak létre megfigyelhető változást az elektron állapotában, csak közvetítik az erőhatást, azaz létrehozzák az elektromos és a mágneses mezőt. Mivel ezek a fotonok nem figyelhetők meg közvetlenül, a szakirodalom virtuálisnak nevezi ezeket a részecskéket.
A virtuális fotonok ugyanabból az okból jelennek meg a mezőelméletben, mint a stacionárius pályák fogalma az atomokban. A stacionárius pályákat nem láthatjuk, csak az ugrásokat két pálya között, ez vonatkozik az elektromágneses mezőre is, amely szintén nem látható közvetlenül, csak az általa mozgatott töltések megfigyelésével szerzünk tudomást róla. Ezt a láthatatlan mezőt építik fel a szintén láthatatlan virtuális fotonok, ami az elektrodinamika kvantumelméletében a valószínűség még mélyebb szintjéhez vezet. Ebben az értelemben mondhatjuk, hogy a mezőelméletben már a valószínűség valószínűségéről van szó.
Lamb shift és az elektron anomális mágneses momentuma
Bár Dirac a mezőelmélet alapjait már korábban lerakta, ez sokáig nem keltett komolyabb figyelmet az elméleti fizikusok között. Ennek az volt az oka, hogy a relativisztikus kvantummechanika kielégítő pontossággal írta le a kísérleti eredményeket. Később azonban a mérési pontosság növekedésének köszönhetően két olyan jelenségre derült fény, amit az elmélet már nem tudott magyarázni. Az egyik a Lamb shift. Hidrogén atomban különböző kvantumszám kombinációk azonos energiaértékkel rendelkeznek a számítások szerint. Lamb azonban kimutatta, hogy az elméleti egyezés ellenére is különböznek az energianívók. A másik az elektron anomális mágneses dipólus momentuma. Amint már szó volt róla, mágneses monopólus nem létezik a harmadik Maxwell egyenlet értelmében, viszont a negyedig egyenlet szerint köráram jelenlétében mágneses dipólus keletkezik. Ennek felel meg, hogy az atomi elektronok pályamozgása, amit az Lħ impulzusnyomaték jellemez, létrehozza a μ = μBL mágneses dipólust, ahol μB =eħ/2m a Bohr magneton. Ez az összefüggés származtatható a klasszikus elektrodinamika alapján is. Az elektron Dirac elmélete viszont behoz egy új elemet, mely szerint az elektron rendelkezik saját impulzusnyomatékkal is, amit az S = ½ spin jellemez, amihez szintén járul mágneses nyomaték, kiegészítve a pályamozgás által létrehozott mágneses dipólus momentumot:
μ = μB(L +2S)
A spin előtti 2-es faktor a Dirac egyenlet hozadéka, ami viszont már nem értelmezhető a klasszikus fizika keretein belül. (A fénysebességű forgás koncepciója kézenfekvő magyarázatot ad a 2-es faktor eredetére, ami a kéttengelyű forgásból fakad. Ez ugyanis felezi a spint, viszont a mágneses momentum nem feleződik, mert azt egytengelyű forgás, a Larmor precesszió hozza létre).
Mi a kvantumfluktuáció?
Az elektron mágneses momentuma azonban nagyobb, mint ami a Dirac egyenletből következik, mégpedig μ = 2,0023 μBS. Ennek értelmezését oldotta meg a kvantumelektrodinamika elmélete, amely szerint a növekedést a kvantumfluktuáció okozza. Ez alatt azt kell érteni, hogy a virtuális foton kibocsátása, illetve elnyelése az elektron pozícióját állandó „rázkódásban” tarja, fluktuációt okoz. Az átlagos pozíció adja meg a szokásos potenciális energiát, de dinamikai jelenségekben a finomabb közelítések már az átlagtól való eltérés hatását is figyelembe veszik. A Larmor precesszió is dinamikai jelenség, amelyből a mágneses momentum meghatározható. Ha a klasszikus elektrodinamika alapján értelmezzük a mágneses momentumot, az arányos a töltés által a mozgás során körbezárt területtel, ez pedig megnövekszik a fluktuáció következtében.
Perturbációs eljárás a QED elméletben
A fluktuáció becsléséhez abból lehet kiindulni, hogy a virtuális fotonok kibocsátásának és elnyelésének intenzitása határozza meg az elektromágneses kölcsönhatás mértékét, amit az e2 = αħc összefüggésből származó elemi töltés nagysága jellemez. Itt α = 1/137 a Sommerfeld állandó, az elektromágneses kölcsönhatás csatolási együtthatója. (A fénysebességű forgások koncepciójában a belső kettősforgások Coriolis ereje bocsátja ki a virtuális fotonoknak megfelelő egytengelyű forgásokat). A fluktuáció mértéke arányos a virtuális fotonok intenzitásával, ami a Sommerfeld állandónak felel meg. Ezt szemlélteti körmozgás esetén a töltés által körbejárt területet 1+ α/2π mértékű növekedése, és az evvel járó momentumnövekedés. Ez már jó közelítésben egyezést ad a megfigyelt kísérleti értékkel. A QED elmélet számításai azonban nem ezt a szemléletes utat követik, hanem közelítő megoldást adnak a mezőelmélet által felépített egyenletekre. A módszer alapja az időtől függő perturbáció számítás. Ennek lényege, hogy először elhagyjuk az egyenletből azt a tagot, amely miatt a számítás nem végezhető el explicit módon. Ez jogos módszer, ha ez a tag kicsi. A megoldásként nyert állapotfüggvény alapján az elhagyott tag nagysága megbecsülhető, majd a következő közelítésben ezt korrekcióba lehet venni. A tovább finomított állapotfüggvény már pontosított becslést az eredetileg elhagyott tagra, amiért tovább lehet javítani a megoldás pontosságát. Ez az eljárás már rendkívül pontos értéket ad az anomális mágneses momentumra, amely tizenkét tizedesig egyezik a kísérleti értékkel.
Van-e fizikai tartalma a matematikai közelítés egyes lépéseinek?
Az egymást követő perturbációs lépések szükségessé tesznek különböző virtuális folyamatokat, melyeket Richard Feynman diagramjai szemléletes formában írnak le. Ezek között a józanész számára meghökkentő lépések is vannak. Példaként előfordulnak a fénysebességet meghaladó, vagy időben visszafelé mutató folyamatok is. Feynman meg is jegyzi könyvében (QED. The strange theory of light and matter), hogy ezek összebékítésére a józanésszel, kár is törekedni. Magam ezt másképp fogalmazom meg. Ugyanis a „furcsa” tagok fellépése a matematikai közelítés szükségszerű velejárója. Az időfüggő közelítő eljárás egyes lépéseiben előre futhatunk, ilyenkor a következő közelítésnél vissza kell lépni az időben, máskor viszont lemaradunk, amiért olyan tag lép fel a számításban, amelyik meghaladja a fény sebességét is. A számítás egyes lépései csupán matematikai közelítési eszközök, melyeknek nincs közük a realitáshoz. A lényeg csupán a számítás végeredménye, amelynek már valódi fizikai tartalma van. A másik megjegyzés pedig arra vonatkozik, hogy amikor virtuális folyamatokról van szó, akkor a valószínűség birodalmában járunk, ahol az utakat nem a részecske járja be, hanem a képzeletünk, midőn sorra vesszük a lehetőségeket. A lehetséges pályák valószínűségi összege pedig nem azt jelenti, hogy a részecske párhuzamosan több pályát is futna be egyidejűleg, hanem azt, hogy az okok számbavételénél több lehetőség is felmerül.
Szingularitás a QED számításokban
Van viszont a QED számításoknak egy csúnya szépséghibája, mert a sajátenergia számítás első perturbációja végtelent ad. Ezt mesterségesen próbálják kiküszöbölni, amikor a tömeget és a töltést önkényesen renormalizálják. Jobb ennél a szingularitást tudomásul venni, mert ennek oka – ahogy azt korábban előrevetítettük – a mezőfogalom definíciójában rejlik, amely elkerülhetetlen paradoxont hordoz magában. (A fénysebességű forgások koncepciója viszont segít a végtelen kiküszöbölésében, mert véges határt ad meg, ameddig érvényes a potenciálszámítás kifejezése, és ezért nem jön létre végtelen járulék.)
Az anyag hullámtermészete
Az elektrodinamika mezőelméletének elveit megismerve kezdhetünk hozzá a bevezetésben felvetett kérdés megválaszolásához: hogyan is értelmezhetjük az anyag kettős természetét, amely nem csak a foton tulajdonsága, hanem elvben bármelyik részecskéé, atomé és molekuláé.
De Broglie vetette fel, hogy minden részecskének van hullámtermészete is, ami az impulzushoz kapcsolódik és a hullámhosszal jellemezhető:
λ = h/p
Foton esetén ez abból következik, hogy az impulzus arányos az energiával a p = E/c = h·f/c = h/λ összefüggés szerint. Elektronok esetén Davisson és Germer nikkel egykristályon végzett diffrakciós kísérlete adta meg a bizonyítékot a hipotézisre. A kristályban egymástól d távolságra atomokból felépülő síkok vannak, és amikor egy λ hullámhosszú sugárzás éri a felületet θ szögben, akkor diffrakciós maximum figyelhető meg a Bragg formula szerint (William Henry Bragg, 1862-1942 és Lawrence Bragg, 1890-1971, apa és fia, akik 1915-ben együtt lettek Nobel díjasok):
k λ = 2dsinθ,
ahol k = 1, 2, 3, …. egészszám.
A diffrakciós maximum oka, hogy az alsó síkból visszaverődő fény hosszabb utat tesz meg, és amikor az úthossz különbség a hullámhossz egész számú többszöröse a hullámok erősítik egymást, a többi irányban viszont kioltódnak.
Davisson és Germer nem a fönti elrendezést választotta, ahol a beeső sugárzás szöge változik, hanem a nikkel kristálylap síkjára merőlegesen érkező elektronok visszaverődését tanulmányozta különböző irányokban. Ebben az esetben a diffrakciós maximum szögét a módosított Bragg törvény adja meg:
k λ = 2dsin(90 - θ/2)
Az elektronokat elektromos térben felgyorsították, így változtatva az impulzust, és azt tapasztalták, hogy 50 fokos visszaverődési szögnél a gyorsító feszültséget változtatva jelentős maximum figyelhető meg 54 V értéknél. A nikkel egykristály rácstávolsága (d = 0,92x10-10m) és az 54 eV energiához tartozó impulzus alapján épp akkora hullámhossz adódott ki, ami a de Broglie hipotézisnek megfelelt. Később protonokkal, egyes kisebb atomokkal és molekulákkal is sikerült bizonyítani a hipotézis helyességét.
Rugalmas szórás és a fény lassulása optikai közegekben
A fenti kísérlet a rugalmasan szóródó elektronok megfigyelésén alapul. Bármely kölcsönhatást, akkor tekintünk rugalmasnak, ha annak során impulzusátadás megy végbe, anélkül, hogy közben megváltozna a komponensek energiája. Tegyünk egy kitérőt, annak érdekében, hogy lássuk fotonok esetén a rugalmas ütközés hatását. Erre példa, amikor a fény belép valamilyen optikailag sűrűbb közegbe, ahol a törésmutató mértékében lecsökken a sebessége:
cn = c/n,
ahol n a törésmutató. Amikor a fény az optikailag sűrűbb közegbe jut, például belép a vízbe, vagy üvegbe, ott a határréteg atomjaival, illetve elektronjaival kerül kölcsönhatásba. Ez a kölcsönhatás rugalmas, hiszen a nagyobb törésmutatójú közegben sem változik meg a fény színe, azaz a foton nem ad le energiát. A lassulás oka, hogy lerövidül a hullámhossz, λn = λ/n, és így a sebesség cn = 2πf·λn kisebb lesz. Mivel a foton impulzusát a h/λ arány adja meg, így az impulzus megnövekszik a törésmutató mértékében:
pn = n·p
Következésképpen, optikai közegekben a fény lassabb haladása a megnövelt impulzusnak tulajdonítható.
A relativitáselmélet szerint fizikai közegekben a fény sebessége nem növekedhet meg a vákuumhoz képest, ami azt jelenti, hogy a töltésekkel kölcsönhatásba lépő fény a közeg atomjaitól kizárólag felveheti az impulzust, de azt nem adhatja át rugalmas kölcsönhatások esetén. Ha ugyanis is átadná és csökkenne saját impulzusa, akkor növekedne a hullámhossz, amiért a sebesség meghaladná a vákuumban elérhető maximális c értéket. Megfordul a helyzet, ha a kölcsönhatás nem rugalmas, mert ekkor az impulzusátadás egyúttal energia, azaz frekvenciacsökkenéssel jár együtt, oly módon, hogy a hullámhossz és a frekvencia szorzata már nem lesz nagyobb a c értéknél. Az impulzusnövekedés a sugárzás és anyag közötti kölcsönhatás tartományára korlátozódik, azon kívül nem lép fel, amiért gázokban a törésmutató növekedése a koncentrációval arányos. Sűrű, kondenzált közegekben a sugárzás eredeti impulzusa több mint duplájára nőhet, ezért néhány kristályban n értéke kettő fölé is mehet (Például germániumban n = 4,05). Az impulzus összegzési szabálya szerint ez úgy történhet meg, ha az első atommal való kölcsönhatás tartományán belül további atomokkal is létrejön a kölcsönhatás.
Mezőelméleti szempontból vizsgálva a jelenséget, az optikai közeg elektronjai virtuális fotonok kibocsátásával lépnek kölcsönhatásba a beérkező fénnyel, amelynek során a közeg által kibocsátott fotonok szuperponálódnak a kívülről érkező fotonokkal. Mivel minden foton impulzussal is rendelkezik, ez lehetővé teszi az impulzusátadást. Ez az impulzusátadás azonban egyirányú, a valódi foton úgy változtatja meg a virtuális fotonok állapotát, hogy saját impulzusa növekszik a virtuális fotonok, illetve az ezeket kibocsátó töltésrendszer rovására. Úgy is fogalmazhatunk, hogy a fény valamilyen anyagi közeggel rugalmas kölcsönhatásba kerülve, azt maga felé húzza. Viszont rugalmatlan kölcsönhatás esetén arra nyomást gyakorol, ez a fénynyomás.
A későbbiek szempontjából fontos tanulság, hogy fotonok szuperpozíciója olyan folyamat, amely energiacsere nélküli impulzusátadást eredményez. A rugalmas kölcsönhatásban részt vevő fotonok szükségképpen virtuálisak, a megfigyeléshez ugyanis energiaváltozás is szükséges.
Elektron diffrakciója kristályokban
Visszatérve az elektron diffrakcióhoz, először azt kell megvizsgálni, hogy amikor az elektron ütközik a kristályráccsal, milyen folyamat játszódik le, és milyen kölcsönhatás lép fel ennek során? A kristály úgy viselkedik, mint egy tükör, amelyet a rendezett atomok elektronjainak potenciáltere hoz létre. A beérkező elektronok kölcsönhatásba kerülnek a szinuszosan változó potenciállal, ahonnan különböző irányban pattanhatnak vissza. Az irányváltozás impulzusváltozást jelent, amelynek hátterét a kristály egésze biztosítja, de annak nagy tömege miatt az elmozdulás olyan kicsi, hogy kísérletileg nem észlelhető. A mezőelmélet szerint az elektron és a rácsatomok által létrehozott potenciál kölcsönhatását virtuális fotonok közvetítik. A „támadó” elektront virtuális fotonok serege veszi körül, amely megütközik a kristály rendezett sorokban álló elektronjainak foton seregével. A csata addig tart, amíg a védekező fotonok serege nem állítja meg és taszítja el valamilyen irányban a támadó elektront. A két tábor fotonjai közül azok vesznek részt a harcban, amelyek frekvenciája megegyezik. A frekvencia egyezése ellenére az érkező elektron fotonjai többlet impulzussal rendelkeznek. Amikor elektromos feszültséggel gyorsítjuk az elektront, létrehozunk egy olyan töltéseloszlást, amely vonzó hatást gyakorol az elektronra. Ez a vonzó hatás a töltések által kibocsátott és elnyelt virtuális fotonok szuperpozíciója által jön létre, de azt is meg kell említeni, hogy az elektron felgyorsítása valódi fotonok képződésével is együtt jár.
A diffrakciós kísérlet már a gyorsítási szakasz után következik be, ahol megszűnik a megfigyelhető fotonok képződése. Ebben a tartományban többlet impulzussal mozognak a virtuális fotonok, igazodva az elektron impulzusához A többlet impulzus miatt pedig megváltozik a szuperpozíciós struktúra az elektronból és a kristályból kilépő virtuális fotonok között. A struktúra változásában játszik szerepet, hogyan szuperponálódnak a virtuális fotonok, amelyek a kristályrács egymás mögötti pozícióiból indulnak. Teljesülni kell a rugalmassági feltételnek, mely szerint a visszalökött elektron impulzusa abszolút értékben változatlan marad. Ennek megvalósításához a rács két fotonjának „együttműködése” szükséges, megkövetelve, hogy az egymás mögötti síkokból érkező fotonok fázisa megegyezzen. Ez a fázis követelmény csak bizonyos szögek esetén teljesül, amely meghatározza, hogy milyen irányban fog kilökődni az elektron. Az imént részletezett mechanizmus lényegét úgy foglalhatjuk össze, hogy ugyanolyan játékszabályok játszanak szerepet elektron diffrakció esetén az interferencia létrehozásában, mint amikor elektromágneses sugárzás éri a kristályrácsot a röntgen diffrakció során.
A fénysebesség állandósága
Érdemes még kitérni a relativitás kiinduló elvére, amely szerint vákuumban a fénysebesség állandó. A diffrakciós kísérletben vákuumra van szükség, hogy az elektronok ne szóródjanak a kristály elérése előtt is. Hogyan egyeztethető össze a fénysebesség állandóságának törvényével, hogy a p = m·v impulzusú elektron által kibocsátott virtuális fotonoknak lerövidül a hullámhossza és ezáltal lecsökken a sebességük? Amikor az elektron impulzusáról beszélünk, akkor hallgatólagosan a laboratóriumi, azaz a nikkel egykristály inercia rendszerében gondolkozunk. Ebből a rendszerből nézve a mozgó elektron által kibocsátott virtuális fotonok impulzusa p = m·v értékkel megnövekszik, és hasonlóan az optikai kötegbe belépő fényhez, a sebesség lecsökken:
cel,foton = cvákuum – v = cvákuum – p/m
Ez a változás látszólagos, abban az értelemben, hogy az elektron saját rendszerében semmi nem változik, a mozgó elektron impulzusának csak akkor van szerepe, amikor létrejön az elektron és a nikkelrács közötti kölcsönhatás. A kölcsönhatás terjedési sebessége szempontjából is látszólagos a jelenség, mert az elektron v sebességét hozzá adva a virtuális fotonok csökkent sebességéhez, visszakapjuk a vákuumbeli fénysebességet, azaz nem kerülünk szembe avval az elvvel, amely megköveteli, hogy az elektromágneses kölcsönhatási sebesség ne függjön a mozgó objektum sebességétől. Valójában arról van szó, hogy a kibocsátó objektum fotonjainak terjedési sebessége látszólagosan megváltozik egy másik inercia rendszerből nézve, és éppen ez biztosítja, hogy a tényleges kölcsönhatás (információtovábbítás) sebessége független legyen a két inercia rendszer egymáshoz képesti sebességétől. A látszólagos jelleget hangsúlyozni kell, hiszen a virtuális fotonok sebességváltozása nem mérési adat, evvel szemben, amit mérésekkel ellenőrizhetünk, hogy mennyi idő kell a kölcsönhatás közvetítéséhez két mozgó objektum között. Ez utóbbira elvi lehetőséget ad, hogy ha gyorsítjuk az elektront, akkor detektálható, tehát valódi fotonokat is kibocsát.
(Az előzőekben nem a relativitáselmélet sebesség összeadási szabályait alkalmaztuk, amit az indokol, hogy a Davisson-Germer kísérletben az elektron sebessége nem haladja meg c századrészét, és így a kísérleti pontosság határain belül alkalmazni lehet az impulzus p = m·v formuláját és a sebességek vektoriális összeadási szabályát.)
Mit kell érteni az anyag hullámtermészetén?
A részecskék, vagy elterjedt megfogalmazásban az „anyag” hullámtermészete a kölcsönhatás jellegéből fakad, ebben a fotonok közvetítő szerepe jelenik meg, mint anyagi tulajdonság. Amit látunk, amit észlelünk az a részecske jelleg, de amikor értelmezzük a jelenség hátterét, a hullámképhez jutunk a valószínűség összegzési szabályai által. Magyarázatunk ésszerű és konzekvens, de mégis csak gondolati termék, a valóság olyan lenyomata, amit a foton mutat meg nekünk rajta hagyva saját bélyegét.
Davisson és Germer kísérletének fő jelentősége, hogy bizonyítékot ad a mezőelmélet virtuális fotonokra alapított koncepciójának helyességére. A virtuális foton a mozgató erő, a megfigyelhető foton a mozgási állapot változásának indikátora.