A fizika kalandja

A fizika kalandja

Kozmológia és gravitáció

Előadás a Kutatók Éjszakáján (2023 09. 29.)

2023. október 02. - 38Rocky

 

Előadásom valószínűleg nem csak témájában, hanem felfogásában is szokatlan lesz. A jelenlegi kutatást a specializáció jellemzi, amely egy-egy szűk témát vizsgál rendkívüli alapossággal. Itt most ennek épp ellenkezőjéről lesz szó: különböző diszciplínák közötti kapcsolatkeresés lesz a tárgy, melynek során az elektron tulajdonságaiból kiindulva jutunk el a kozmológia nagy kérdéseihez.

Saját szakterületem az elektronspin-rezonancia spektroszkópia, ebből adódóan izgatott a kérdés, hogy valójában mi is a spin. Jelentése szerint forgás, vagy ha úgy tetszik perdület, de tényleg perdül-e, forog-e az elektron és a többi részecske, amelyik spinnel rendelkezik? Ha viszont forog, akkor fellép a centrifugális erő, amit valaminek ellensúlyozni kell. Ez vezetett el a következő kérdéshez, vajon szóba jöhet-e a gravitáció? Ennek einsteini elmélete szerint a téridő görbülete hozhat létre gravitációs erőhatást. De mi hozza létre a görbületet, vissza vezethető-e a forgásra a görbület? A speciális RE Lorentz kontrakciós szabálya szerint a forgó rendszer kivezet a nem-euklideszi geometriából, de ekkor milyen geometriához jutunk? Hogyan kapcsolódik össze a geometria és az erő, a tér forgásai tekinthetők-e mediátornak a tömegek között, miként a kvantumelektrodinamikában a foton, amely kapcsolatot létesít a töltések között? Így kerül be a képbe a QED módszertana. A téridő forgása kapcsolja össze a felsorolt diszciplínákat, amit a kepleron elvben foglaltam össze. Felmerült viszont bennem a gondolat, hogy létezik a tér gömbszimmetrikus mozgásának egy ellentétes párja is, amikor a gömbfelszínét befutó forgások helyett sugárirányú tágulás lép fel. Ez a tér tágulása, amely elvezetett végül a parányi elektrontól elindulva az univerzum nagy szerkezeti kéréseihez, a kozmológiához is.  Erről a szokatlan útról fog szólni előadásom.

Ismerkedjünk meg először a két világ nagyságrendjeivel, az egyiket képviselje a Föld, a másikat az elektron. A forgásokhoz, keringésekhez tartozó két fizikai mennyiség az impulzusmomentum, vagy mai szóhasználatban a perdület. Föld esetén a forgást 7*10 33 Js jellemzi az elektron spinje pedig 5*10-35, az arány 68 nagyságrendi különbség. Ha a Föld keringő mozgását vesszük alapul a perdület mérőszáma 2*1040 Js, míg az elektron pályákhoz nagyságrendben 10-35 Js tartozik. Óriási tehát a különbség, de a mozgásukat tekintve mégis ugyanaz a fizikai állandó jellemzi tulajdonságaikat. A Föld és a bolygók mozgásait leíró tudomány a gravitáció elmélete, az elektron tulajdonságaival a kvantummechanika illetve a QED foglalkozik.

Amikor elindulunk utunkra, hogy kapcsolatot találjunk a fizikai különböző területei között, kérdéseket teszünk fel, de nagyon nem mindegy, hogy milyenek a kérdéseink. Ha jó az induló kérdés remélhetjük, hogy jó választ is kaphatunk, ha rossz az induló kérdés, annak az a jele, hogy a válasz során egyre több igazolhatatlan hipotézis láncolatába gabalyodunk bele. Hipotézisekre a tudományban persze szükség van, de ha a hipotézisek láncolata túl hosszú, akkor ideje van gyanakodni, hogy rossz volt a kiindulópontunk. Vegyük például Einstein fontos kérdését: Honnan származik a tömeg gravitációs ereje. Erre adott korszakos fontosságú válasza, amikor a téridő görbületével értelmezte a gravitációt. De a kvantummechanika térhódítása elvezetett egy rossz kérdéshez is, amikor mindenáron a kvantumvilágba akarták gyömöszölni a gravitáció elméletét is. Ennek következménye lett a húr, membrán és egyéb elméletek hosszú sora, amelyben egyre több láthatatlan térdimenzió feltételezésébe fogtak, és eljutottak a végtelen számú párhuzamos univerzum gondolatához is, anélkül, hogy akár egyetlen kísérleti eredmény is alátámasztaná a burjánzó elméletek sokaságát. Ez ösztönzött arra, hogy magam is feltegyek kérdéseket. Olyan kérdéseket vetettem fel, hogy miért görbül a téridő a tömegek körül, illetve, hogy mi a gravitáció mediátora. Ez vezetett el a kepleron koncepciójához, amely azonban nem kvantumos közvetítő. Ezt a koncepciót fejtem ki előadásomban.

A fizikai elméleteket két szinten fogalmazhatjuk meg: makroszkopikus és mikroszkopikus szinten, és keresni kell a két szint kapcsolatát. Ez utóbbira példa, ahol az elektrodinamika törvényeit kapcsolatba lehet hozni az elemi részecskék kvantumelektrodinamikai tulajdonságaival. Nehezebb ugyanezt az utat megtalálni a gravitáció elméletében. Newton fogalmazta meg a gravitáció elméletét, amikor a csillagok és bolygók tömegének gravitációs erőt tulajdonított, amely alapján sikeresen lehetett leírni a bolygó mozgások törvényeit. Ehhez tette fel Einstein a maga kérdését, amikor a gravitáció eredetét akarta megtalálni és bevezette a térgörbületek fogalmát, erre alapozva írta fel gravitációs egyenletét, amely alapján lehetett olyan anomáliákat is értelmezni, amire Newton egyenlete nem adott kielégítő magyarázatot. Ehhez a ponthoz teszem hozzá a magam kérdését: miért görbül a tér a tömeg körül? Ha elfogadjuk Einstein felvetését, mely szerint a téridő görbülettel rendelkezik, amelyik változik és követi az anyagmozgásokat, akkor már eljutottunk a tér mozgásaihoz. De akkor miért ne foroghatna a tér a tömeg körül, amely aztán megalkotná a tér görbült szerkezetét? De ez idáig még csak makro-szintű megközelítés. A QED elméletéhez kell nyúlni, ha a mikro-szintű magyarázatot keressük a gravitációra. Szükség van egy fotonhoz hasonló közvetítőre, amely azonban nem kvantumos. Ezt az indokolja, hogy amíg a töltés szigorúan kvantált jellegű, erre nem mutat semmi az elemi objektumok tömege esetén. Így formálódott ki a kepleron koncepció, amelyben megvalósul a részecske és a hullámtermészet is.

Hová lehet elhelyezni a kepleront a részecskefizika rendszerében? A részecskéknek két alaptípusa van: a feles spinű fermionok és az egészspinű bozonok. A fermionok térbeli pozícióval, töltéssel és tömeggel rendelkeznek és mozgásuk sebessége nem érheti el a fénysebességet. A bozonok legismertebb képviselője a foton, az elektromágneses kölcsönhatás közvetítője. Nincs tömege és töltése, de rendelkezik impulzussal, perdülettel és energiával is, emellett fénysebességgel halad. A fotonnak két típusát szokás megkülönböztetni, a megfigyelhető fotont, amely hírt ad a világról és a virtuális, vagyis megfigyelhetetlen fotont, amelyik az elektromágneses erőt hozza létre a töltések között.

A kepleron viszont tisztán virtuális részecske, nem rendelkezik spinnel, nincs tömege, töltése és saját energiája sem. Ez egy olyan gömbszimmetrikus térforgás, melynek sebessége követi a Kepler törvényt, ezért is neveztem el kepleronnak, szerepe a tömeggel rendelkező objektumok közötti gravitációs erő létrehozása a tér szerkezetének megváltoztatásával, amelyet fénysebességgel valósít meg. Mivel a kepleronnak nincs energiája, így kvantuma sincs.

A kepleront alkotó térforgások megértéséhez egy különleges mozgással kell megismerkedni, amelynek jellemzője a gömbszimmetria. Ha például a Föld forgására gondolunk, annak van egy kitüntetett tengelye, amelyik összeköti az Északi és a Déli sarkot. Ha a Föld keringő mozgására gondolunk, annak pedig kitüntetett  síkja van. Ezek olyan forgások, amelyek a kör 2π radián szögtartományát járják be. Ez egy szimmetriacsökkentő mozgási forma. A gömbszimmetrikus mozgás viszont a gömb teljes felületét járja be, mintha egyszerre két tengely körül történne a forgás, éppen ezért 4π szögtartományú forgásról kell beszélni. Ez egy szimmetriatartó mozgási forma! Erre példát a kvantummechanika ad, amikor az elektron gömbszimmetriájának az S = ½ spin felel meg, szemben a pályamozgással, amelynek kvantumszáma egész, azaz 2π szöget bejáró elektronpályákról van szó.

  1. ábra. A kepleron gömbforgások, a radiális görbület és a Newton törvény kapcsolata

Itt eljutottunk ahhoz a ponthoz, amikor keressük a választ: hogyan vezet a gömbforgás a tér görbületéhez. Einstein egyenlete a téridő görbületét egy 4*4 dimenziós görbületi tenzorral – az un. metrikus tenzorral – írja le, mi viszont megelégszünk egy olyan sémával, amelyben egyetlen, un. radiális komponens jellemzi a görbületet, vagyis a tér gömbszimmetrikus marad. Ez természetesen egyszerűsítés, de indokolt, amikor gömbszimmetrikus objektumokról van szó, de fenntartható akkor is, ha a görbületet nagy távolságban vizsgáljuk a csillagászati objektumokhoz képest, például sok millió fényévnyire a galaxisoktól. A görbület meghatározásánál a speciális relativitáselmélet Lorentz kontrakciójából indulunk ki. Ez azt mondja ki, hogy a térkoordináta a mozgás irányában lerövidül, de változatlan marad arra merőlegesen. Körmozgásnál ez a kerület rövidülését jelent a 2πR szabályhoz képest, vagy gömbforgásnál a gömb felszíne lesz kisebb a 4πR2-hez képest. Ez az a csökkenés, ami megadja a radiális görbület definícióját, amit az ábrán a kék nyíl mutat. Behelyettesítve a Lorentz kontrakciót a görbület negatív lesz és kifejezhető a sebességég/c arány négyzetével. A gömbforgás sebességéről feltételezzük, hogy a Kepler szabályt követi, hasonlóan ahhoz, ahogy a kis tömegű objektumok keringenek a nagy tömegű Nap körül.  Úgy definiálhatjuk a gravitáció potenciális energiáját, hogy a dimenziómentes görbületet szorozzuk a relativitáselmélet ekvivalencia törvényének megfelelő mc2 energiával. A potenciálisenergiából pedig a szokásos módon kapjuk meg a jól ismert Newton erőt. Itt most egy fordított utat jártunk be Newtonhoz képest. Ő a gravitációs erőből származtatta le a bolygómozgás törvényét, mi viszont a forgásból indultunk ki és úgy jutottunk el az erőtörvényhez. Azok számára, akik járatosak az Einstein gravitációs egyenletének matematikájában, itt feltüntettem még a radiális görbület kapcsolatát a metrikus tenzorral.

  1. ábra. A gravitációs erő relativisztikus korrekciójának értelmezése a kovariancia elv és Eötvös ekvivalencia elvének összekapcsolásávl

Jöhet persze az ellenvetés: a kepleron modell magyarázza a klasszikus gravitációs törvényt, de Einstein általános relativitáselmélete ezt már túlhaladta, amikor egy relativisztikus korrekciót bevezetve magyarázni tudta a Merkúr bolygó perihéliumának eltolódását. Nos, ez az a pont, ami mutatni fogja, hogy mekkora hozadéka van, ha jól kapcsolunk össze különböző fizikai törvényeket. Az egyik a relativitáselmélet energia törvénye, a kovariancia elv, amely a mozgás kinetikus energiáját „beépíti” a tömegnövekedésbe. Ha például egy bolygó, így a Merkúr a Nap körül befogásra kerül, akkor kinetikus energiája révén nagyobb tömegre tesz szert. A másik törvényt Eötvös torziós ingával bizonyította, nevezetesen a tehetetlen és a gravitáló tömeg ekvivalenciáját. Nem kell mást tenni, mint a tömegnövekedést figyelembe venni a gravitációnál és eljutunk pontosan ahhoz a relativisztikus korrekcióhoz, amit Schwarzschild bravúros matematikával levezetett Einstein gravitációs egyenletéből kiindulva.

Érdekes következtetéseket vonhatunk le kötött rendszerek tömegdeficitjére is. Amikor a fúziós reakció felépíti a Hélium magot, nagymértékű tömegdeficit jön létre: az erős nukleáris kölcsönhatás révén hatalmas energiájú gammasugárzás keletkezik. A molekulákat összekötő kémiai kötés is okoz kismértékű tömegdeficitet, ami UV sugárzást hoz létre. Bolygó befogásnál az energia mérleg épp fordított, ekkor tömegnövekedés jön létre, jelezve hogy a gravitációs folyamatot nem kíséri energia kisugárzás.

Úgy tűnik hát, hogy az einsteini elmélet tökéletes leírást ad a bolygók mozgásáról a Naprendszeren belül. De mekkora is a Naprendszer? Nem nagyobb, mint egy fényév. Ha ezt összevetjük a Tejút hosszával az ennél 100 ezerszer nagyobb. Ha az egész univerzummal vetjük össze, akkor az arány több mint tízmilliárd! Biztos-e, hogy ilyen hatalmas távolságban is változás nélkül érvényesek a gravitáció törvényei? A Tejút centrumától távoli csillagok keringési sebessége például zavaró összefüggést mutat. Azt várnánk a newtoni elmélettől, hogy a külső tartomány csillagai egyre kisebb sebességgel keringenek. De mit mutatnak a csillagászati megfigyelések? A csillagok keringési sebessége a külső tartományban gyakorlatilag állandó, úgy másodpercenként 220 km/s. Ráadásul a Tejút számított tömege nagyon kevés ahhoz, hogy a spirális karok végein ellensúlyozni tudja a centrifugális erőt, vagyis le kellene szakadni a csillagoknak. Mi tartja egyben a Tejutat? Más hasonlóan zavaró megfigyelésekre vezetett a csillaghalmazok centrális sűrűsége: jóval nagyobbnak adódott annál, ami várható a halmazok össztömegéből. Az einsteini elmélet érdekes következménye a gravitációs lencsehatás, amely megsokszorozhatja távoli galaxisok képét. Ennek intenzitása is meghaladja az elmélet által várt értéket. Ezek az anomális jelenségek vezettek a sötét anyag hipotéziséhez! A számítások olyan eredményre vezettek, hogy a sötét anyag mennyisége hozzávetőleg hatszorosa a megfigyelhető, látható anyagnak!

Ennek az elméletnek is megvan az előzménye. Le Verrier francia matematikus érdeme volt a Neptunusz felfedezése. A bolygó mozgásokat elemezte és kiszámította, hogy a különböző bolygók mozgása hogyan befolyásolja egymást. Az Uránusz keringő mozgásánál olyan anomáliára bukkant, amit úgy lehetett feloldani, ha létezik egy további külső bolygó is. Ennek a feltételezett bolygónak meghatározta a lehetséges pozícióját, és amikor kérésére egy csillagász megvizsgálta a megjelölt helyet, azonnal rábukkant az új bolygóra, ami aztán a Neptunusz nevet kapta. Hasonló számítások a Merkúr bolygó esetén is anomáliát mutattak. Az ellipszis pálya perihéliuma fokozatosan elcsúszik a várt pozíciótól, de ezt a többi bolygó zavaró hatásával nem lehetett értelmezni. Ezért született meg egy legbelső láthatatlan bolygó hipotézise, ami a Vulkán nevet kapta. Viszont minden erőfeszítés kudarcot vallott, hogy ezt a bolygót meg is találják a csillagászok. A dilemmát végül Einstein oldotta fel, amikor gravitációs elmélete úgy módosította a newtoni törvényt, amely már pontosan értelmezte a Merkúr bolygó mozgásának anomáliáját. A láthatatlan Vulkán bolygó koncepciója ezért elvetésre került.

Nem lehetséges, hogy a sötét anyag koncepciója helyett is inkább azt kellene megnézni, hogy lehetséges-e módosítani a newton törvényt? Ebből indult ki egy izraeli fizikus, Milgrom is. Feltételezte, hogy nagy távolságban, úgy 1000 fényév felett a gravitáció nem a newtoni törvénynek megfelelően R2-el arányosan csökken, hanem lassabban. Ezt nevezzük a MOND (Modified Newtonian Dynamics) modellnek. Ha ügyesen választunk meg bizonyos paramétereket az erő egyenletben, akkor értelmezhetővé válik a csillagok keringési sebességének anomáliája. Ez eléggé ad hoc magyarázat, ráadásul nem minden jelenségre alkalmazható, amit magyarázni lehet, a sötét anyag hipotézisével, amiért a MOND elmélet nem vált széles körben elfogadottá. Ugyanakkor a sötét energián alapuló modellnek is vannak erősen vitatható pontjai. Az egyik a sötét anyagot alkotó feltételezett részecskék kimutatása. Nevet már kapott ez a részecske, a WIMP (Weakly Interacting Massice Particle) tucatnyi nagy nemzetközi projekt is indult, hogy megtalálják ezeket a részecskéket, de mindegyik teljes kudarcot vallott. A másik erősen vitatható kérdés a sötét anyag térbeli eloszlása. Térképeket ugyan lehet arról készíteni, hogy hogyan helyezkednek el valahol a galaxisok perifériáján, de arra nincs magyarázat, hogy milyen erők felelősek azért, hogy olyan különleges a sötét anyag eloszlása.

Még nem beszéltem a sötét energia kérdéséről, de ennek magyarázatát sem tudja elősegíteni a sötét anyag hipotézise. Honnan is indult a sötét energia hipotézise? Ennek megértéséhez ki kell lépni galaxisunkból és vizsgálni kell a távoli csillagokat. Ha egy csillag távolodik tőlünk, akkor hosszabb lesz az onnan érkező fény hullámhossza, ezt nevezzük vörös eltolódásnak. Ellenkező esetben, ha a csillag közeledik összetorlódnak a hullámok, ez a kék eltolódás. Hubble kezdte először vizsgálni ezt a jelenséget. Klasszikus csillagászati módszerekkel lehetett becsülni bizonyos távolságon belül az egyes galaxisok távolságát. Hubble érdekes felfedezésre jutott, ott ahol a vizsgált galaxis már 10 millió fényévnél távolabbra van, a fény vöröseltolódása növekszik a távolsággal, vagyis egyre nagyobb sebességgel távolodnak tőlünk a galaxisok. Ez vezetett el az Univerzum tágulásának koncepciójához. Későbbi mérések azt is kimutatták, hogy az Univerzum gyorsulva tágul. De milyen erő, milyen energia idézi elő a gyorsulva tágulást?  Ennek értelmezéséhez született meg a sötét energia koncepciója. Ennek előtörténete Einsteinhez nyúlik vissza. Amikor kidolgozta az általános relativitáselméletét sztatikus univerzumban gondolkodott és kellett egy erő, ami ellensúlyozza a gravitáció összehúzó erejét. Emiatt az egyenletben felvett egy mindenütt jelenlevő taszító tagot, amit Λ-ával jelölt, ez kapta a kozmikus állandó nevet. Később rámutattak, hogy az egyensúly fenntartásához ez nem elég, amiért Einstein maga is elismerte tévedését. Viszont Hubble felismerése után már nem kellett sztatikus Univerzumban gondolkodni, és nagyon „jól jött” ez a Λ tag a tágulás magyarázatához. Így jött létre, a jelenleg általánosan elfogadott Λ-CMD kozmológia, amely szerint az általunk megfigyelhető anyag nem több, mint az Univerzum 4-5 százaléka.

 A koncepció általános elfogadottságot mi sem mutatja jobban, hogy James Peebles, a kozmológia legfontosabb kidolgozója, ezért Nobel Díjat is kapott 2019-ben. Egy éve még eszembe sem jutott, hogy kételkedjek a sötét anyagra és a sötét energiára alapozott kozmológia helyességében. Viszont úgy egy évvel ezelőtt eszembe jutott valami: szimmetria szempontból az univerzum tágulása voltaképp épp a fordítottja a kepleron forgásoknak, valójában a tér két lehetséges gömbszimmetrikus mozgásáról van szó. Amíg a forgás a gömb felszínét csökkenti le, addig a tágulás a sugár csökkenését idézi elő. Ennek értelmében a tér tágulása átalakítja a kepleron szerkezetét és az eredetileg kibocsátott kepleronok már nem vonzást, hanem taszítást fognak közvetíteni a tömegek között.

A Kepler forgás sebessége csökken a távolsággal, vagyis csökken a negatív görbület, a Hubble tágulás sebessége viszont növekszik, tehát nagyobb lesz a pozitív görbület, amikor a két sebesség egyezik, a görbület kiegyenesedik. A tömegből kiáramló kepleronok megfordítják szerepüket, innen kezdve már nem vonzást közvetítenek, hanem taszítást.  Ezt a távolságot nevezzük a kepleron inverziós sugarának, ennek harmadik hatványa arányos az objektum tömegével és szerepel benne a G gravitációs állandó és a H Hubble konstans négyzete is. Először azt néztem meg, hogy mekkora távolságban történik meg a kepleronok inverziója a Tejút esetén. A szakirodalomban talált tömegadatból indultam ki, és ekkor ért a hatalmas meglepetés: az inverziós távolság 3,26 millió fényévnek adódott. Ennek az értéknek óriási jelentősége van, mert egyrészt jóval nagyobb, mint a Tejút kiterjedése, de csak kivételes esetben kerül két galaktika ennél közelebb egymáshoz. A Tejúthoz legközelebbi galaxis, az Androméda köd 2,5 millió fényévre van tőlünk. A galaxison belül tehát a gravitáció az úr, de a galaxisok csaknem kivétel nélkül mind taszítják egymást.

A galaxisok közötti taszításnak van egy nagyon szokatlan tulajdonsága: nem csökken a galaxisok távolságával! Honnan származik ez a különös tulajdonság? A kepleron koncepcióban az egyes atomok körül kialakuló térforgásokat tekintjük virtuális részecskéknek, amelynek intenzitása arányos a tömeggel, emissziós együtthatója G/c2 és csökken a kibocsátástól vett R távolság négyzetével. A kepleronok a tér tágulását követve átalakulnak és megfordítják a radiális görbület előjelét, melynek nagysága a Lorentz kontrakció miatt a tágulási sebesség és c arányának négyzete lesz. A Hubble törvény szerint a sebesség a távolsággal arányos, ezért a távolság négyzetével arányos görbületet kapunk az egyes kepleronok esetén. Minthogy a tömegből kilépő kepleronok intenzitása R2 szerint csökken bizonyos távolság fölött a görbület már állandó lesz.

Az antigravitáció távolságfüggetlenségének különös jelentősége van, mert emiatt az univerzum több százmilliárd galaxisának taszító hatása összeadódik. Ez a felismerés pedig egy csapásra több kérdésre is választ ad! A Tejutat minden irányból galaxisok százmilliárdjai veszik körül és mindegyik taszító erőt gyakorol rá. Ez egy hatalmas kompressziónak felel meg, és ennek nyomása nem engedi kiszakadni a gyorsan forgó csillagokat. Nincs szükség tehát a sötét anyag vonzó hatására, mert ennek szerepét helyettesíti az univerzum „nagy prése”. Az sem rejtély többé, hogy mi hozza forgásba a galaxist. Ez a kompresszió nem teljesen egyenletes, ami forgató nyomatékot gyakorol és forgásba hozza az egész csillaghalmazt. A préselő erő a galaxis halmazokat is összenyomja, ezért találunk anomális centrális koncentrációt. A nyomás hozzájárul a tér görbületéhez is, ami magyarázza a gravitációs lencsehatás intenzitását is. Sőt, a sötét energia eredete sem lesz rejtély többé, hiszen valamennyi galaxis taszítja egymást, így megtaláltuk annak okát is, hogy mi okozza az univerzum gyorsulva tágulását.

  1. ábra. A gravitációs erő távolság függése a Newton (kék), a Milgrom (fekete szaggatott) és a kepleron (vörös) koncepció szerint
  2. ábra. A gravitációs erő változása a Tejút határától az univerzum határáig logaritmikus ábrázolásban

A következő két ábrán mutatom be, hogyan változik a gravitációs erő a különböző modellekben. A kék görbével mutatott Newton erőhöz képest a Milgrom modell szerint lassabban csökken az erő, viszont a kepleron modell szerint gyorsabb a csökkenés, majd nagyjából az Androméda köd távolságában a vonzás taszításba megy át. A következő ábra logaritmikus skálán mutatja meg a gravitáció átmenetét antigravitációba. Nagyon széles tartományban gyenge és állandó nagyságú taszító erő lép fel a galaxisok között, de amikor közeledünk az univerzum határához, ahol a Hubble tágulási sebesség c-hez közeledik, felerősödik a taszítás. Ez arra utal, hogy a Tejút szerkezetére az univerzum valamennyi galaxisa hatást gyakorol, de ezen belül kiugróan nagy a szerepe a legtávolabbi galaxisoknak. Mivel az antigravitációs hatás is fénysebességgel terjed, ez azt jelenti, hogy az Ősrobbanás galaxisunk szerkezetére is döntő hatást gyakorol.

Térjünk még vissza annak magyarázatához, hogy a Tejút csillagjainak keringési sebessége miért nem változik a centrumtól való távolság függvényében. A sötét anyag koncepció ezt egy önkényes tömegeloszlással próbálja magyarázni, anélkül hogy indokolná, miért viselkedik így a sötét anyag. A külső kompresszió esetén nem szorulunk ilyen feltevésre. A Tejút spirálkarjainak vastagsága lényegében azonos. Külső kompresszió esetén az erőt a felülettel kell osztani, ami viszont az egyenlő vastagság miatt fordítottan arányos a centrumtól való távolsággal. Ez azt jelenti, hogy a külső nyomás a centrifugális erővel azonosan változik a sugárral, vagyis a csillagok keringési sebessége is azonos lesz.

 Korábban említettem, hogy mekkora a Tejút inverziós sugara. A Tejút tömegében viszont szerepelt a sötét anyag mennyisége is, ha ettől eltekintünk a sugár kisebb lesz, úgy 2 millió fényév körül, de ez a lényeget nem érinti. Viszont érdekes lehet egyéb fizikai objektumok inverziós sugara. Például a Hidrogén atomé 20 cm. Ez amiatt érdekes, mert a Tejút csillagközi terében a H atomok távolsága ennél jóval kisebb, vagyis az egész galaxis gravitációsan összekötött fizikai objektum. Más a helyzet a galaxisok közötti térben. Az ott becsült atomsűrűség már nagyon kicsi, hozzávetőleg ott az atomok átlagos távolsága 1m. Vagyis a galaxisközi térben már a hidrogén atomok között nagyon gyenge taszító erő lép fel.

Közepes méretű atomok esetén 1m körül van az inverziós távolság, kondenzált anyagokban az atomok távolsága ennél 10 nagyságrenddel kisebb. Ez azt jelenti, hogy az egyes atomok körüli görbült térstruktúra tökéletesen átfed, amiért a gravitációs erő arányos lesz a tömeggel. Voltaképp ez magyarázza az Eötvös által bizonyított ekvivalenciát a tehetetlen és a gravitáló tömeg között. 

Érdekes következtetéshez jutunk, ha az inverziós sugarat az egész univerzumra vonatkoztatjuk. A jelenleg elfogadott kozmológia szerint az univerzum kora 13,8 milliárd év, ami azt jelenti, hogy az univerzum kölcsönhatási sugara 13,8 milliárd fényév, vagyis ez a legnagyobb távolság, amelyen belül a gravitációs vagy antigravitációs hatás még elér hozzánk. Ezt alapul véve az univerzum tömegére kapunk becslést, ami 1053 kg nagyságrendbe esik. Ez a Tejút tömegénél kb. 100 milliárdszor nagyobb. Ez a szám is jól egyezik a galaxisok csillagászatilag becsült számával.

Hátra van még egy érdekes kérdés, milyen a nem-euklideszi tér geometriája. Két irányban indulhatunk el: beszélhetünk elliptikus, azaz Riemann geometriáról, illetve hiperbolikus, azaz Bolyai-Lobacsevszkij geometriáról. Einstein általános relativitáselméletében mindig csak a Riemann geometriáról van szó, ennek oka, hogy ebben kizárólag gravitációs vonzásról van szó, amelyhez olyan geometria tartozik, amelyben a párhuzamosok összefutnak, illetve a kör kerülete az átmérőhöz viszonyítva kisebb, mint π, vagy ami ezzel ekvivalens a háromszög szögeinek összege nagyobb 180 foknál, azaz π radiánnál. A kepleron koncepció viszont arra utal, hogy a vonzás átmegy nagy távolságban taszításba, azaz ott a sugár és kerület aránya fordítva tér el π-hez viszonyítva. Ez azt jelenti, hogy a galaxisokon belül elliptikus a geometria, de a közöttük lévő tartomány már hiperbolikus. Úgy képzelhetjük el az univerzumot mint egy hatalmas mazsolás kalácsot, amelyben a mazsola elliptikus geometriájú, de maga a kalács, ami ezt magában foglalja hiperbolikus geometriájú. A kétféle geometria megjelenése szükségszerű, mert többcentrumú elliptikus geometriát csak hiperbolikus geometria övezheti. A teret csak úgy görbíthetjük meg, ha benne a völgyeket dombok és hegyek választják el. Ebből a szempontból az ősrobbanás utáni univerzum kivételt képez, mert ott a nagy anyagsűrűség miatt csak egyetlen centrum létezett. Az univerzumot szétfeszítő infláció és tágulás már megteremtette annak feltételét, hogy elkülönült centrumok, azaz galaktikák alakuljanak ki. Ez azt jelenti, hogy a kezdeti szétválást ugyan a gravitáció lelassította, de ennek folyamán megteremtődtek az antigravitáció feltételei, ami begyorsította a tágulási folyamatot, ez jellemzi jelenlegi univerzumunkat.

  1. ábra. A Λ-CDM és a kepleron modell összevetése különböző csillagászati megfigyelés magyarázatában

A következő dián felsorolok néhány példát, amiben összevethetjük, hogy melyik kozmológia teljesít jobban. Ezt mindenki maga is végig gondolhatja. Talán egy példát azért kiemelnék. Ez a Great Attractor kérdése. Kimutatták ugyanis, hogy a Tejút bizonyos csillagkép irányában nagy sebességgel közeledik, ez alatt 600 km/s értéket kell érteni. A jelenlegi kozmológiában ezt úgy magyarázzák, hogy létezik a Tejútnál milliószor nagyobb csillaghalmaz, ami maga felé rántja galaxisunkat. De ha létezik egy ilyen óriási csillaghalmaz, hogyhogy mégse látjuk? Erre jön az ügyes hipotézis, mely szerint pechünkre úgy helyezkedünk el a Tejút síkjához képest, hogy az pont eltakarja előlünk. Ügyes magyarázat! A kepleron koncepcióban nincs szükség ekkora ügyességre, hiszen az antigravitációs nyomás egyenlőtlenségei könnyen okozhatnak olyan hatást, amelyik egyik irányban meglökheti a Tejutat.

Végül mi arra az esély, hogy a tudomány befogadja a kepleron koncepciót a Λ-CMD kozmológia helyett? Jelenleg nem túl nagy, mert mind a szakmai, mind az ismeretterjesztő irodalmat elárasztják a sötét anyagra és sötét energiára hivatkozó híradások. Ez már annyira átitatta a gondolkodást, hogy nehéz ezen rést ütni. Ha valakihez eljut a jelenlegi kozmológiát cáfoló elképzelés, az nem ad hitelt neki, és ösztönösen arra gondol, hogy valami biztosan hibás benne. Ezen nem lehet csodálkozni és bizonyos szempontból nem is baj. Ha ugyanis egy új elmélet megszületik, annak ki kell állni a legszigorúbb kritikát is! Magam is bármilyen kritikát szívesen fogadok, ha megvannak a nyílt vita feltételei. Csak az ellen tiltakozom, ha valaki a tudománytalanság bélyegével áll elő. Végül is mi, vagy ki határozza meg, hogy mi a tudományos és mi tudománytalan? Egy példát hoznék fel. Már száz éve folynak az erőfeszítések, hogy a gravitációt is kvantumos alapokra helyezzék. Ma már ott tartanak, hogy 24 dimenziós láthatatlan térben rezgő húrokat és membránokat tételeznek fel és végtelen számú párhuzamos univerzumról beszélnek, de sajnos még ez sem segít a konzekvens elmélet megtalálásában. Nekem is be kellene állni a sorba, és mondjuk 32 dimenziós láthatatlan tereket kellene elegáns matematikába felöltöztetni, hogy engem is tudományosnak tartsanak? Számomra nem a matematikai öltözet eleganciája a lényeg, hanem az elméleti következtetések és a kísérletek összhangja. Ezt minél egyszerűbb eszközökkel lehet elérni, annál jobb! Bemutattam például, hogy a gravitációs erő relativisztikus korrekciója matematikai bravúrok nélkül is levezethető, ha megtaláljuk a kapcsolatot különböző törvények között. Én ezeknek a kapcsolatoknak megtalálására törekszem, ezt mutattam be előadásomban is.

Köszönöm a figyelmet!

Megfigyelhetjük-e a sötét anyagot?

A fizika válságának mélyülő tünetei

 

 

A legújabb hírekben olvashatjuk, hogy 2023. július 1.-én felbocsátották a Kennedy Űrközpontból az Európai Űrügynökség Euclid teleszkópját, amely az univerzum eddig nem ismert úgynevezett “sötét anyagát” próbálja felderíteni. Mekkora esély van arra, hogy ez a kísérlet sikeres legyen, és egyáltalán mi is ez a sötét anyag? Mielőtt a kérdésre válaszolnánk, lapozzunk kissé vissza a csillagászat történetébe.

A gravitáció előtörténete Keplerre vezethető vissza, aki 1618-ban megállapította a bolygómozgás törvényeit és kimondta, hogy a bolygók ellipszis pályán mozognak. Ennek magyarázatát Newton adta meg 1687-ben a tömegvonzás törvényének felállításával. Erre alapozta Le Verrier francia matematikus számításait, amikor az Uránusz bolygó pálya anomáliáját egy ismeretlen bolygó zavaróhatásával értelmezte és meghatározta annak lehetséges pozícióját. Ez vezetett 1846-ban a Neptunusz bolygó felfedezéséhez. Ez megfordította az elmélet és a kísérleti megfigyelés szokásos sorrendjét, mert egy fizikai elmélet lett a csillagászati megfigyelés előfutára. A hasonló próbálkozás a Merkúr bolygó pályaanomália magyarázatára azonban sikertelen maradt. Le Verrier ezért feltételezte egy bolygó létezését a Nap és Merkúr közötti, ami később a Vulkán nevet kapta, de ezt nem sikerült megfigyelni. Pontosabban volt olyan csillagász, aki beszámolt a megfigyelésről, de erről kiderült, hogy amit látott az egy napfolt volt. Az anomáliára végül magyarázatot Einstein adott 1915-ben az általános relativitáselmélet alapján, ami épp akkora eltérést adott meg a pályaanomáliára, mint amit megfigyeltek. Ezt tekinti a fizika Einstein elméletének legfőbb bizonyítékának.

Az említett példa felhívja a figyelmet napjaink fizikájának egyre gyakoribb megnyilvánulására. Szaporodnak az olyan elméleti várakozások, amelyek nem kapnak kísérleti visszaigazolást, sőt sokszor olyan hipotézisek látnak napvilágot, ahol a kísérleti megfigyelésre még csak esély sincs. Ebbe a kategóriába tartozik a sötét anyag és sötét energia hipotézise is. Az utóbbira azért volt szükség, mert megfigyelték az univerzum gyorsulva tágulását, már pedig ehhez szükség van valamilyen erőre illetve energiára, ami jobb híján a sötét energia nevet kapta.

De most térjünk rá a sötét anyag kérdésére. Miért volt szükség erre a hipotézisre? Először a Tejút esetén, de aztán más galaxisokban is, azt találták, hogy a csillagok keringési sebessége a csillaghalmaz belső tartományától eltekintve azonos, pedig a Newton törvény szerint a centrumtól való távolság függvényében csökkenni kellene (lásd az 1. ábrát).

 

  1. ábra: A csillagok keringési sebessége a Tejút spirál karjaiban.

 

A: (szaggatott kék vonal) A Newton egyenletből számított sebesség,

 B. (piros vonal) A csillagászatilag megfigyelt keringési sebesség

 

Milyen erő tartja vissza a csillagokat, hogy a forgás centrifugális ereje ne szakítsa ki ezeket a galaxisból? Hasonló kérdés merül fel a csillaghalmazok belsejében megállapított anyagsűrűség tekintetében, amely meghaladja azt az értéket, ami elvárható a megfigyelt teljes tömeg alapján. Hasonlóan többlet erőt kíván a gravitációs lencsehatás intenzitása is. Ez utóbbi Einstein gravitációs elméletéből következik, ha elég nagy a tömeg. Erre született meg a magyarázat, hogy létezni kell valamilyen láthatatlan, de gravitációt előidéző tömegnek is, amely a sötét anyag nevet kapta. A hipotézis gyenge pontja, hogy ilyen anyagot nem lehetett megfigyelni és a közvetett hatások megfigyelése is sikertelen maradt. A hírben említett teleszkóp felbocsátásától várják, hogy végül mégis találnak valamilyen közvetett bizonyítékot a sötét anyag és talán a sötét energia eredetére is. Ez egy rendkívül költséges vállalkozás, ami azzal a veszéllyel jár, hogy túl nagy a csábítás valamilyen eredmény felmutatására, amivel igazolni lehet a befektetés indokoltságát. Könnyen kialakulhat olyan helyzet, mint ami a Merkúr pálya anomáliájának magyarázata érdekében történt egykoron.

Magam részéről egy alternatív magyarázatot adnék, amelyben sem sötét anyagra, sem sötét energiára nincs szükség. Képzeljük el, hogy valahol az Atlanti óceán partján állunk és megpróbáljuk megfejteni az óceán titkait! Ennek érdekében kiveszünk a tengerből egy parányi cseppet, nem nagyobbat, mint egy milliméter és kiterjedt vizsgálatnak vetjük alá. Megállapítunk ebből bizonyos törvényszerűségeket és arra gondolunk, hogy ezzel megérthetjük az egész óceán tulajdonságait. Miért hozom fel ezt a példát? Mert ez a vízcsepp úgy aránylik a hatalmas óceánhoz, mint a teljes Naprendszerünk az univerzumhoz. A Naprendszer hozzánk képest hatalmas, sőt hatalmas a Földhöz képest is. Csak ábrándozhatunk egy szomszéd bolygó meglátogatásáról, pedig ennek távolsága is parányi a Naprendszer méretéhez képest, amit a fény egy év alatt fut végig. Viszont a teljes univerzumot a fény több mint tízmilliárd év alatt járja be! Amikor Kepler, Newton és Einstein megalkották a gravitáció törvényeit a bolygók mozgását vették alapul a Naprendszeren belül, és így jött létre a tömegvonzás törvénye. Mindegyik elmélet csak vonzást tételezett fel a tömegek között, de biztosak lehetünk-e benne, hogy így van ez a Tejút teljes kiterjedésében, sőt még a galaxisok közötti térben is? Erről a kérdésről hallgat a fizika! Mintha, a fizika tudományában is működne a szép emlékű 3 T szabály! Vannak támogatott, vannak tűrt és vannak tiltott fizikai koncepciók. A kozmológiában tűrt felfogásnak számít a MOND elmélet, melyben a gravitáció nagy távolságban lassabban tűnik el a Newton egyenlethez képest, de ez a koncepció is csak a tömeg vonzó hatására épít. Ez az elv nem tiltott, mert csak részleges alternatívát kínál a hivatalos, azaz a támogatott Λ-CMD kozmológiához képest. (Itt Λ az Einstein által bevezetett kozmológiai állandó, ami arra hivatott, hogy megakadályozza az univerzum gravitációs összeomlását, CMD pedig „Cold Dark Matter”, vagyis a hideg sötét anyag). Viszont nagy ellenállásba ütközik arról publikálni, hogy a gravitációs vonzás átmehet taszításba, amiért a galaxisok taszítják egymást. Ez a koncepció ugyanis szükségtelenné tenné egyfelől a sötét energia feltételezését az univerzum tágulásának magyarázatához, másfelől a sötét anyag létezése is kétségessé válna, mert a Tejút stabilitását a sok százmilliárd galaxis kompressziós hatása biztosítaná. Úgyszintén érthetővé válna a csillaghalmazok nagy anyagsűrűsége, valamint a gravitációs lencsehatás nagy intenzitása is.

 De hogyan juthatunk el egy ilyen elmélethez? A kiinduló elv Einstein korszakos gondolata, aki a gravitációt a négydimenziós téridő görbületeire vezette vissza. A görbületet egyfelől a tömeg hozza létre, másfelől a görbült térbe kerülő másik test saját tömegével arányos potenciális energiára tesz szert. De miért és hogyan jön létre a tömeg körül a tér görbülete? Az általam kidolgozott kepleron koncepció szerint az elemi részecskék, melyeket fénysebességű forgások alkotnak, forgásba hozza maga körül a teret, mégpedig a Kepler törvénynek megfelelő frekvenciával. A relativitáselmélet Lorentz kontrakciós szabálya szerint emiatt a kör kerülete lerövidül, de a kör sugara változatlan marad, vagyis az euklideszi tér helyett elliptikus Riemann geometriát kapunk. Ennek a geometriának sajátja, hogy mindig vonzást hoz létre. Ezért is alapul Einstein elmélete a Riemann geometrián. Viszont a tér gyorsulva tágulása épp fordított irányban görbíti a teret: a sugár rövidül, a kerület változatlan marad. Ez a Bolyai-Lobacsevszkij hiperbolikus geometriájához vezet, amely taszítást idéz elő a tömegek között. A forgási és a tágulási sebesség viszonya határozza meg, hogy vonzani, vagy taszítani fogják egymást a testek. Az átmenet a kettő között a tömeg nagyságától függ. Alapul véve a Tejútra vonatkozó csillagászati adatokat, arra az eredményre jutunk, hogy az átmenet nagyobb távolságban valósul meg, mint a Tejút mérete, de kisebb a galaxisok közötti távolságnál. Lásd 2. ábra.

 

  1. ábra. A Newton féle erő (kék) viszonya a kepleron erőhöz (piros). A kepleron erő az Androméda köd távolságában megy át vonzásból taszításba. Az Androméda és a Tejút távolsága kisebb, mint a galaxisok közötti tipikus távolság.

 

A csillagászati adatok tehát visszaigazolják azt a várakozást, hogy a tömegek vonzzák egymást a galaxisokon belül, de a galaxisok egymást taszítani fogják. A modellből az is következik, hogy nem csökken a galaktikus taszítás a távolsággal, sőt még nőhet is, ha a távolodási sebesség megközelíti a c fénysebességet. Lásd 3. ábra.

  1. ábra. A kepleron erő távolságfüggése logaritmikus skálán. Az Andromédánál nagyobb távolságban lévő galaxisok között közel azonos a taszítás, ami azonban megnő a relativisztikus hatások miatt, ha a távolodási sebesség c-hez közelít.

A sajátos távolságfüggés miatt az univerzum hatalmas kompressziós nyomásának létrehozásában valamennyi galaxis egyaránt részt vesz. A kompresszió hatását figyelhetjük meg a galaxisok szerkezetében, ez okozza azok lapos szerkezetét, ez magyarázza, hogy miért keringenek a csillagok azonos sebességgel a különböző sugarú spirál karokban, ezen kívül a különböző irányokból érkező nyomás egyenetlensége magyarázza, hogy miért lendül forgásba az egész Tejút, de arra is magyarázatot kapunk, hogy miért rendeződnek a galaxis halmazok fonalakba és síkokba. Vagyis számos csillagászati jelenség az univerzális belső nyomás jelenlétét tükrözi.

De bármennyire is nyilvánvaló a kepleron koncepció előnye a jelenleg általánosan elfogadott Λ – CDM kozmológiához képest, még óriási akadály torlaszolja el az utat, hogy a fizikus társadalom elfogadja ezt az elképzelést. Minden fórumon a hivatalos kozmológiáról hallhatunk, erre adtak már Nobel díjat is, és hány tudományos karrier épült már rá erre a koncepcióra! Korunk fizikáját elárasztják az igazolhatatlan hipotézisek. A fizika arany fedezetét az elmélet és a megfigyelések összhangja kellene, hogy biztosítsa, de ez a követelmény mindinkább háttérbe szorul. Vajon sikerül valamit kiizzadni a sötét anyag létezéséről az Euclid teleszkóp megfigyeléseiből? Nagy nyomás nehezedik a fizikusokra, hogy felmutassanak valamit, hiszen a projekt költségeit valamivel indokolni kell! Magam szkeptikus vagyok a sötét anyaggal kapcsolatban, de abban reménykedni lehet, hogy a távcső nagyszerű adottsága révén feltárul majd valami váratlan, valami teljesen új az univerzum titkaiból.

 

1.       ábra: A csillagok keringési sebessége a Tejút spirál karjaiban.

 

A: (szaggatott kék vonal) A Newton egyenletből számított sebesség,

 

B. (piros vonal) A csillagászatilag megfigyelt keringési sebesség

 

A

A csillagok keringési sebessége

a Tejút spirál karjaiban

 

 

Milyen erő tartja vissza a csillagokat, hogy a forgás centrifugális ereje ne szakítsa ki ezeket a galaxisból? Hasonló kérdés merül fel a csillaghalmazok belsejében megállapított anyagsűrűség tekintetében, amely meghaladja azt az értéket, ami elvárható a megfigyelt teljes tömeg alapján. Hasonlóan többlet erőt kíván a gravitációs lencsehatás intenzitása is. Ez utóbbi Einstein gravitációs elméletéből következik, ha elég nagy a tömeg. Erre született meg a magyarázat, hogy létezni kell valamilyen láthatatlan, de gravitációt előidéző tömegnek is, amely a sötét anyag nevet kapta. A hipotézis gyenge pontja, hogy ilyen anyagot nem lehetett megfigyelni és a közvetett hatások megfigyelése is sikertelen maradt. A hírben említett teleszkóp felbocsátásától várják, hogy végül mégis találnak valamilyen közvetett bizonyítékot a sötét anyag és talán a sötét energia eredetére is. Ez egy rendkívül költséges vállalkozás, ami azzal a veszéllyel jár, hogy túl nagy a csábítás valamilyen eredmény felmutatására, amivel igazolni lehet a befektetés indokoltságát. Könnyen kialakulhat olyan helyzet, mint ami a Merkúr pálya anomáliájának magyarázata érdekében történt egykoron.

Magam részéről egy alternatív magyarázatot adnék, amelyben sem sötét anyagra, sem sötét energiára nincs szükség. Képzeljük el, hogy valahol az Atlanti óceán partján állunk és megpróbáljuk megfejteni az óceán titkait! Ennek érdekében kiveszünk a tengerből egy parányi cseppet, nem nagyobbat, mint egy milliméter és kiterjedt vizsgálatnak vetjük alá. Megállapítunk ebből bizonyos törvényszerűségeket és arra gondolunk, hogy ezzel megérthetjük az egész óceán tulajdonságait. Miért hozom fel ezt a példát? Mert ez a vízcsepp úgy aránylik a hatalmas óceánhoz, mint a teljes Naprendszerünk az univerzumhoz. A Naprendszer hozzánk képest hatalmas, sőt hatalmas a Földhöz képest is. Csak ábrándozhatunk egy szomszéd bolygó meglátogatásáról, pedig ennek távolsága is parányi a Naprendszer méretéhez képest, amit a fény egy év alatt fut végig. Viszont a teljes univerzumot a fény több mint tízmilliárd év alatt járja be! Amikor Kepler, Newton és Einstein megalkották a gravitáció törvényeit a bolygók mozgását vették alapul a Naprendszeren belül, és így jött létre a tömegvonzás törvénye. Mindegyik elmélet csak vonzást tételezett fel a tömegek között, de biztosak lehetünk-e benne, hogy így van ez a Tejút teljes kiterjedésében, sőt még a galaxisok közötti térben is? Erről a kérdésről hallgat a fizika! Mintha, a fizika tudományában is működne a szép emlékű 3 T szabály! Vannak támogatott, vannak tűrt és vannak tiltott fizikai koncepciók. A kozmológiában tűrt felfogásnak számít a MOND elmélet, melyben a gravitáció nagy távolságban lassabban tűnik el a Newton egyenlethez képest, de ez a koncepció is csak a tömeg vonzó hatására épít. Ez az elv nem tiltott, mert csak részleges alternatívát kínál a hivatalos, azaz a támogatott Λ-CMD kozmológiához képest. (Itt Λ az Einstein által bevezetett kozmológiai állandó, ami arra hivatott, hogy megakadályozza az univerzum gravitációs összeomlását, CMD pedig „Cold Dark Matter”, vagyis a hideg sötét anyag). Viszont nagy ellenállásba ütközik arról publikálni, hogy a gravitációs vonzás átmehet taszításba, amiért a galaxisok taszítják egymást. Ez a koncepció ugyanis szükségtelenné tenné egyfelől a sötét energia feltételezését az univerzum tágulásának magyarázatához, másfelől a sötét anyag létezése is kétségessé válna, mert a Tejút stabilitását a sok százmilliárd galaxis kompressziós hatása biztosítaná. Úgyszintén érthetővé válna a csillaghalmazok nagy anyagsűrűsége, valamint a gravitációs lencsehatás nagy intenzitása is.

 De hogyan juthatunk el egy ilyen elmélethez? A kiinduló elv Einstein korszakos gondolata, aki a gravitációt a négydimenziós téridő görbületeire vezette vissza. A görbületet egyfelől a tömeg hozza létre, másfelől a görbült térbe kerülő másik test saját tömegével arányos potenciális energiára tesz szert. De miért és hogyan jön létre a tömeg körül a tér görbülete? Az általam kidolgozott kepleron koncepció szerint az elemi részecskék, melyeket fénysebességű forgások alkotnak, forgásba hozza maga körül a teret, mégpedig a Kepler törvénynek megfelelő frekvenciával. A relativitáselmélet Lorentz kontrakciós szabálya szerint emiatt a kör kerülete lerövidül, de a kör sugara változatlan marad, vagyis az euklideszi tér helyett elliptikus Riemann geometriát kapunk. Ennek a geometriának sajátja, hogy mindig vonzást hoz létre. Ezért is alapul Einstein elmélete a Riemann geometrián. Viszont a tér gyorsulva tágulása épp fordított irányban görbíti a teret: a sugár rövidül, a kerület változatlan marad. Ez a Bolyai-Lobacsevszkij hiperbolikus geometriájához vezet, amely taszítást idéz elő a tömegek között. A forgási és a tágulási sebesség viszonya határozza meg, hogy vonzani, vagy taszítani fogják egymást a testek. Az átmenet a kettő között a tömeg nagyságától függ. Alapul véve a Tejútra vonatkozó csillagászati adatokat, arra az eredményre jutunk, hogy az átmenet nagyobb távolságban valósul meg, mint a Tejút mérete, de kisebb a galaxisok közötti távolságnál. Lásd 2. ábra.

 

  1. ábra. A Newton féle erő (kék) viszonya a kepleron erőhöz (piros). A kepleron erő az Androméda köd távolságában megy át vonzásból taszításba. Az Androméda és a Tejút távolsága kisebb, mint a galaxisok közötti tipikus távolság.

 

A csillagászati adatok tehát visszaigazolják azt a várakozást, hogy a tömegek vonzzák egymást a galaxisokon belül, de a galaxisok egymást taszítani fogják. A modellből az is következik, hogy nem csökken a galaktikus taszítás a távolsággal, sőt még nőhet is, ha a távolodási sebesség megközelíti a c fénysebességet. Lásd 3. ábra.

  1. ábra. A kepleron erő távolságfüggése logaritmikus skálán. Az Andromédánál nagyobb távolságban lévő galaxisok között közel azonos a taszítás, ami azonban megnő a relativisztikus hatások miatt, ha a távolodási sebesség c-hez közelít.

A sajátos távolságfüggés miatt az univerzum hatalmas kompressziós nyomásának létrehozásában valamennyi galaxis egyaránt részt vesz. A kompresszió hatását figyelhetjük meg a galaxisok szerkezetében, ez okozza azok lapos szerkezetét, ez magyarázza, hogy miért keringenek a csillagok azonos sebességgel a különböző sugarú spirál karokban, ezen kívül a különböző irányokból érkező nyomás egyenetlensége magyarázza, hogy miért lendül forgásba az egész Tejút, de arra is magyarázatot kapunk, hogy miért rendeződnek a galaxis halmazok fonalakba és síkokba. Vagyis számos csillagászati jelenség az univerzális belső nyomás jelenlétét tükrözi.

De bármennyire is nyilvánvaló a kepleron koncepció előnye a jelenleg általánosan elfogadott Λ – CDM kozmológiához képest, még óriási akadály torlaszolja el az utat, hogy a fizikus társadalom elfogadja ezt az elképzelést. Minden fórumon a hivatalos kozmológiáról hallhatunk, erre adtak már Nobel díjat is, és hány tudományos karrier épült már rá erre a koncepcióra! Korunk fizikáját elárasztják az igazolhatatlan hipotézisek. A fizika arany fedezetét az elmélet és a megfigyelések összhangja kellene, hogy biztosítsa, de ez a követelmény mindinkább háttérbe szorul. Vajon sikerül valamit kiizzadni a sötét anyag létezéséről az Euclid teleszkóp megfigyeléseiből? Nagy nyomás nehezedik a fizikusokra, hogy felmutassanak valamit, hiszen a projekt költségeit valamivel indokolni kell! Magam szkeptikus vagyok a sötét anyaggal kapcsolatban, de abban reménykedni lehet, hogy a távcső nagyszerű adottsága révén feltárul majd valami váratlan, valami teljesen új az univerzum titkaiból.

 

TV riport a kepleron elvről

Hatos csatorna: Hírérték. 2023 július 13.  18h

M: Felvezeti a riportot, bemutatja a résztvevőt és elindítja a kérdéseket.

A korábbi riport túl rövid volt ahhoz, hogy érdemben áttekintsük a felfedezés jelentőségét. Beszéljünk először arról, hogy mitől válik a felfedezés igazán jelentőssé?

 

A felfedezés jelentőségét az időtállóság adja meg. Ha egy felfedezés jelentős, akkor előbb utóbb legyőzi az előtte álló akadályokat és tudományos gondolkodás részévé válik. Az időnek ebben fontos szerepe van, mert épp a legjelentősebb és a leghosszabb múltra visszanéző törvényeket lehet legnehezebben megváltoztatni, ilyenkor rendkívül nagy az ellenállás. (1) Itt most egy 500 éves törvény kiegészítéséről van szó, a gravitációs törvényről. Ezt visszavezethetjük Keplerig, aki a bolygómozgás törvényeit megalkotta, amelyre alapozva mondta ki Newton a tömegvonzás törvényét. De honnan ered azaz erő, ami a tömegeket egymáshoz vonzza, tette fel Einstein a kérdést a 20. század elején. Ő a választ a tér görbületében adta meg.

Einstein koncepciója előtérbe helyezte a nem-euklideszi geometria fontosságát a fizikában. Ebben játszott óriási szerepet Bolyai János alkotása, aki kidolgozta a görbült nem-euklideszi geometria alapjait. Az euklideszi geometria öt axiómára épül, Bolyai az ötödik érvényességét kérdőjelezte meg, amikor felvetette, hogy mi történik akkor, ha a párhuzamosok hosszabb távon már szétszaladnak. Ez az elv teremtette meg a hiperbolikus vagy más néven a Bolyai-Lobacsevszkij geometriát (2). Ennek fordítottját hozta létre Riemann, aki a párhuzamosok összefutásával érvelt, amivel az elliptikus geometriát alapozta meg (3). Einstein az utóbbira építette fel az általa kidolgozott görbült terek elméletét, mert a tömegek között Newtonhoz hasonlóan kizárólag vonzó hatást tételezett fel, és emiatt a Bolyai geometria szerepe a fizikában háttérbe szorult.

Az általam kidolgozott kepleron koncepció viszont egymás mellé állítja a két geometriát, a galaxison belőli térben a Riemann geometria uralkodik, de a galaxisok közötti óriási üres térben már Bolyai geometriája határozza meg a viszonyokat, ezért ott taszításról, vagyis antigravitációról kell beszélni (4). Másként fogalmazva, ott ahol a párhuzamosok összetartanak ott a térben foglalt anyag, a tömeg is összefut, ott gravitációs vonzás alakul ki, ott viszont, ahol széttartanak a párhuzamosok, ott az anyag is ezt teszi, és a taszítás jellemzi a kölcsönhatásukat. Ezáltal válik teljessé a geometria és a gravitáció kapcsolata. Ennek a gravitáció kepleron elméletének fontos hozadéka, hogy új alapokra helyezi az egész kozmológiát, amely szerint a látható anyag világunknak csak parányi, mintegy 4-5 százalékos töredéke (5), a többi a sötét anyag és a sötét energia. Viszont a kepleron koncepció szerint egész univerzumunkat a látható anyag teszi ki.

 

M: Hogyan születik meg egy új felfedezés? Mi vezetett oda, hogy létrejöjjön egy új kozmológia, amelyből kiküszöbölhető a sötét anyag és a sötét energia és megszabadítható a jelenlegi kozmológia az ellentmondásaitól, önkényes feltevéseitől?

 

A: Az igazán nagy felfedezésekhez nem vezet közvetlen út. Egy éve még magam sem hittem, hogy létrejöhet olyan kozmológia, amiből kiküszöbölhető a sötét anyag és világos magyarázat adható a sötét energiára, amely tágulásra készteti az univerzumot.

A kiindulópont egészen máshol volt, nem az univerzum nagy gigászainak, a galaktikák szerkezetéből indult ki, hanem a mikrovilág legparányibb részecskéjéből, az elektronból, annak egy specifikus szerkezeti tulajdonságából, még pedig az elektronspin eredetéből (6).

 

M: Úgy tudom, hogy az ön kutatási területe épp az elektron spinen alapuló szerkezetkutatási módszer. Elmagyarázná nekünk, hogy mi az a spin?

 

Válasz: Valóban ez a módszer az elektronspin rezonancia spektroszkópia, ami széles körben alkalmazható a fizika, a fizikai kémia, a biofizika, sőt az orvostudományok területén is. Ez töltötte ki egész munkásságomat, amiben számos nemzetközi kapcsolat alakult ki, ennek köszönhető, hogy 300 körüli tudományos közleményem fele nemzetközi kooperációban született meg. Ha egy test forog, vagy kering, akkor rendelkezik az impulzushoz, vagy más néven lendülethez kapcsolódó tulajdonsággal, amit impulzus nyomatékának nevezünk. A spin az elemi részecskék esetén hordozza ezt a tulajdonságot. Ezért a legtermészetesebbnek tűnhet, ha az elektron rendelkezik evvel a forgási tulajdonsággal, akkor forog is. A modern fizika még sem beszél forgásról, csupán annyit mond, hogy a spin az elemi részecskék intrinsic tulajdonsága. Ez az a kérdés, ami az elmúlt 15-20 évben erősen lekötötte a figyelmemet (6). Azt vizsgáltam meg, ha feltételezzük az elemi részecskék fénysebességű forgását, az egyrészt ellentmond-e a relativitáselmélet szabályainak, másrészt értelmezhető-e az elemi részecskék spinje mellett elektromos töltésük is. A válasz egyértelműen pozitív volt, az eredményekről részletesen írtam a Scolar Kiadónál megjelent (7) három könyvemben is. Ennek során vetődött fel a kérdés, ha tényleg forog az elemi részecske, akkor mi ellensúlyozza a kifelé ható centrifugális erőt. Ez a kérdés már a gravitáció elméletéhez vezetett el (8). Itt a kiindulást Einstein felfogása adta meg, aki a gravitáció okát a tér görbületére vezette vissza. Azt posztulálta, hogy a tömeg maga körül görbült Riemann teret hoz létre. Ennek értelmezése kedvéért vetettem fel a kérdést: hogyan jöhet létre ez a görbület, vajon a tér forgása lehet-e a görbület kiváltója? Ennek érdekében megnéztem, hogy ha a forgás a Kepler törvénynek megfelelően megy végbe, akkor a speciális relativitáselmélet szerint mekkora lehet a görbület. Ez megadható, ha összehasonlítjuk, az un. inercia és nem-inercia rendszerek tulajdonságait (9).

 

M: Kitérne arra, hogy mit értünk inercia és nem-inercia rendszer alatt?

 

A: Természetesen, hiszen ez alapvető fontosságú kérdés. Képzeljük el, hogy egy autóban ülünk, amelyik hirtelen fékezni kezd. Ekkor előre lendülünk a tehetetlenségi erő miatt. Amíg egyenletes sebességgel haladtunk nem hatott ránk ilyen erő, vagyis inercia rendszerben voltunk, a fékezés már nem-inercia rendszer. Hasonló nem-inercia rendszer a körhinta is, ebben már a kifelé ható centrifugális erőnek vagyunk kitéve. Ha a mozgásokat két inerciarendszer között hasonlítjuk össze, akkor a relativitáselmélet szerint a mozgás irányában a hosszúság csökken, de arra merőlegesen nem változik. Ez a rövidülés a Lorentz kontrakció, amely azonban csak egy látszólagos jelenség, mert az inercia rendszer tetszőlegesen választható. Más a helyzet a forgó rendszerekben, ebben a kerület mentén érvényes a rövidülés, míg a mozgásra merőleges sugár mérete nem változik. Ezzel eljutunk a Riemann geometriához, amelyben a kör kerülete már nem 2Rπ, hanem rövidebb. A kerület és a sugár aránya határozza meg a görbületet, és ezt a relativitáselmélet alapösszefüggését felhasználva, azaz m·c2-el szorozva a görbületet visszakapjuk a Newton-féle gravitációs törvényt. Sőt még azt sem nem nehéz belátni, hogy ebből a gravitáció relativisztikus korrekciója is levezethető.

 

M: De hogyan kapcsolódik ez a kozmológiához, ebből már következne a tömegek közötti taszítás lehetősége is?

 

A: A neves csillagász, Hubble korszakalkotó felfedezése volt, hogy a galaxisok fénye eltolódik a vörös irányába (10), mégpedig minél távolabb van tőlünk egy galaxis, annál nagyobb az eltolódás (11). Ebből következik az univerzum tágulási törvénye, mert az optika szabálya szerint a vörös eltolódás a távolodási sebességgel arányos. Ez a tágulás egy gyorsulási törvény, vagyis ismét valamilyen nem-inercia rendszerről van szó. Ebben azonban a Lorentz kontrakció fordítva működik: itt a sugár csökken le, míg a kör kerülete változatlan marad (12). Ebből viszont olyan görbületi struktúra következik, amely már megfelel a Bolyai féle hiperbolikus geometriának, azaz kiváltja a tömegek közötti taszítást, az antigravitációt.

 

M: Minden nagy felfedezésnek van egy „heuréka” pillanata, amikor a tudóst gyötrő ellentmondások egyszerre magyarázatot nyernek, amikor hirtelen minden világossá válik. Az ön esetében mikor és hogy következett be?

 

A: Ezt a pillanatot az hozta el, amikor kiderült, hogy mekkora távolságban következik be a gravitáció átváltása antigravitációba, amikor a vonzást felváltja a taszítás. Minél közelebb van két fizikai objektum, annál gyorsabb körülöttük a tér forgása, de annál kisebb az eltávolodási sebesség, viszont ha távolabbi objektumokról van szó, akkor a forgási sebesség csökken, viszont nő a távolodási sebesség, ezért bekövetkezik az átváltás (13). Ez a távolság függ az objektumok tömegétől és két fizikai állandó határozza meg, a G gravitációs állandó és a H Hubble-féle tágulási együttható. Megnéztem, hogy csillagászati adatok szerint mekkora a Tejút teljes tömege és kiszámítottam, hogy ehhez mekkora átváltási távolság tartozik. Ekkor ért az óriási meglepetés, mert ez a távolság a különböző becslések szerint úgy 2-3 millió fényévre tehető.

Miért rendkívül fontos ez az adat? Mert e nélkül a kepleron koncepció csupán egy bizonyításra váró hipotézis, de ettől egyszeriben kísérletileg bizonyított elméletté válik! Ez a távolság ugyanis jóval nagyobb, mint a Tejút teljes hossza, ami kisebb százezer fényévnél, de ugyanakkor kisebb a galaxisok távolságánál. Például a hozzánk legközelebbi galaktika, az Androméda 2 és fél millió fényévre van, már pedig ez a távolság a galaxisok között szokatlanul kicsinek számít (14). Mit jelent ez? Azt, hogy a galaxisokon belül gravitációs vonzás érvényesül, de a galaxisok már taszítják egymást. Ennek a taszításnak van egy rendkívül furcsa tulajdonsága: nem csökken a galaxisok egymástól való távolságával, sőt, ha a galaxisok egymáshoz képesti sebessége megközelíti a fénysebességet, akkor a taszítási erő hirtelen megugrik (15). Ez azért fontos, mert az univerzum hatalmas számú, akár trillióhoz közeli galaxisa mind taszítja egymást, vagyis meg van a kulcs, hogy miért is tágul az univerzum! Nem kell többé keresni a sötét energiát!

 

M: Evvel eljutottunk ahhoz a felismeréshez, hogy mi ad magyarázatot a sötét energiára, de mi van a sötét anyaggal? Egyáltalán miért volt szükség a sötét anyag feltételezésére?

 

A: A galaxisokban lévő csillagok összesített tömege határozza meg, hogy mekkora gravitációs erő tartja vissza a benne mozgó csillagokat, amelyek állandó keringésben vannak a galaktika centruma körül. Az egyes csillagok fényessége alapján lehet megbecsülni, hogy mekkora az objektum teljes tömege. Ezekből a becslésekből az derült ki, hogy kevés a tömeg a Tejút stabilitásához (16), szintén a vártnál kisebb a galaxis halmazok teljes tömege, ami magyarázná a centrumban az anyagsűrűséget. Van még egy további jelenség is, ami Einstein elméletéből következik, a gravitációs lencsehatás, amely megtöbbszörözi egyes csillagászati objektumok képét. Mindhárom jelenség arra mutat, hogy nem elegendő ehhez a gravitációs vonzó erő. Mivel a gravitáció elmélete kizárólag vonzást tételez fel a tömegek között, kézenfekvőnek tűnt a hipotézis, hogy létezik valamilyen láthatatlan anyag is, ami megsokszorozza a vonzóerőt. Ez kapta aztán a sötét anyag elnevezést. De miért nincs erre a hipotézisre szükség a kepleron koncepcióban? Ennek oka szintén a taszítás a galaxisok között! Képzeljük el például a Tejutat, amelyet sok százmilliárd galaktika vesz körül minden irányból és ezért a galaktikus taszítás mindenhonnan hatalmas nyomást, kompressziót hoz létre. Ez a külső nyomóerő tartja féken a galaxis csillagait és nem engedi elszabadulni.

 

M: De hadd legyek az ördög ügyvédje! Nagyon meggyőző magyarázatot ad a galaktikus kompresszió, de evvel párhuzamosan még hozzáadódhat a sötét anyag vonzó hatása is!

 

A: Természetesen száz százalékig a sötét anyag létezése nem zárható ki, de igazából nincs szükség erre a feltételezésre. A sötét anyag koncepciója ugyanis sok ellentmondással küszködik. Ennek egyike, hogy a sötét anyag feltételezett elemi részecskéjét, amit WIMP-nek neveztek el, lehetetlen volt a tervezett kísérletekkel megfigyelni. Ez a név a „weakly interacting massive particle” olyan részecskét jelöl, aminek van vonzó hatása, de nem vesz részt az elektromágneses kölcsönhatásban. A másik gyenge pont a sötét anyag mesterkélt tömegeloszlására vonatkozik. A Tejútnak ugyanis spirális szerkezete van, ami különböző sugarú karokból áll (17). Ami különös, hogy benne a csillagok keringési sebessége nem csökken a külső, nagyobb sugarú régiókban, hanem állandó marad. Ez ellentmond a tömegvonzás törvényének, amit egy további hipotézissel próbáltak feloldani. Feltételezték ugyanis, hogy megmagyarázhatatlan okból ez a sötét anyag csak a galaktika külső szférájában helyezkedik el. Tehát az egyik igazolhatatlan hipotézist követi a másik. Evvel szemben a külső kompresszió kézenfekvő magyarázatot ad: a galaxis karokra gyakorolt nyomás épp úgy változik a karok egyenlő vastagsága miatt (18), mint a gravitációs erő és így a keringési sebesség állandó marad.

 

M: Vannak egyéb bizonyítékok is, amelyek alátámasztják a kepleron modellből következő kompressziós magyarázat helyességét, szemben a sötét anyagra alapozott elképzeléssel?

 

A: Van, mégpedig nem is egy. Itt van például a „Nagy Attraktor” kérdése. Ez egy hatalmas, a Tejútnál milliószor nagyobb galaktikus halmaz a feltételezés szerint, ami azonban nem figyelhető meg csillagászati eszközökkel. Ennek létezésére azért következtettek, mert a Tejút sebessége egyes csillaghalmazok irányában meglepően nagy. Arról van ugyanis szó, hogy az általános tágulási szabály mellett a galaxisok végeznek véletlenszerű mozgásokat is, melyek átlag sebessége 200 km másodpercenként, viszont a Tejút esetén ennél háromszor nagyobb érték adódott ki. A vonzási modellben ez úgy magyarázható, hogy a Tejútnak ez a mozgása a Nagy Attraktor felé történik. De akkor miért nem látható mégis ez a különleges galaxis halmaz? A jelenleg elfogadott magyarázat szerint, azért mert Napunk épp a Tejút azon oldalán van, ami véletlenül épp eltakarja előttünk ezt a hatalmas égi objektumot. Ez bizony nagyon önkényes hipotézis. Ilyenre nincs szükség a kompressziós modellben! A Tejútra ható taszító erő nem egyenletes, egyes irányokból nagyobb, más irányokból kisebb. Évmilliárdok során alakul ki ez a hatás, ami létrehozhat egy ilyen nagy sebességet. Ez egyúttal arra is magyarázatot ad, hogy egyáltalán milyen erő forgatja meg a Tejutat, ami a spirálkarok kialakulásához vezetett (19). Az egyes irányokból érkező taszítás eltérése forgatónyomatékot gyakorol a csillaghalmazokra, ami ezért forgásba jöhet. De beszélhetünk a Tejút lapos szerkezetéről is, ami szintén egy külső kompresszió terméke. Szintén megfigyelhetjük, hogy gyakran síkokba, fonalakba rendeződnek az egyes galaxis halmazok. Ez is egy tipikus hatása a külső hatalmas présnek.

 

M: Számomra az elmondottak nagyon meggyőzőnek tűnnek, de én ebben a kérdésben laikus vagyok. Mit szól a szakma a kepleron elméletre?

 

A: Ez lényeges kérdés, mert bármilyen új elmélet csak akkor válhat az általános tudás részévé, ha bekerül a fizikai gondolkodás vérkeringésébe. Jelenleg ettől távol állunk. Könyvek, tudományos publikációk, disszertációk százai, sőt inkább ezrei készülnek a sötét anyag és sötét energia koncepció alapján, az elmélet legfőbb kidolgozóját Nobel Díjjal is kitüntették. Jelenleg a tudományos gondolkodást teljesen átitatja a sötét anyag és a sötét energiába vetett hit, ezért ha valaki előáll egy olyan koncepcióval, hogy vissza az egész, nem fognak hinni neki, arra gondolnak, hogy biztos van valamilyen alapvető hiba az új koncepcióban. Érthető tehát az ellenállás az új elmélettel szemben! Ez magyarázza, hogy még csak cáfolni sem akarják, inkább agyonhallgatják, nem vesznek tudomást róla. A tudományos folyóiratok szerkesztői nem küldik el bírálatra az ilyen elméletet bemutató kéziratot, még csak konkrét kifogást sem emelnek, hanem publikációs filozófiájukra, vagy valamilyen szűrő programra hivatkoznak. Mit lehet tenni az ilyen helyzetben? Egy dolgot, kihangsúlyozni, hogy az új elmélet nagyon szilárd alapokon áll. A kepleron koncepció a fizika hat különböző diszciplínájának elveit foglalja össze (20, 21). Mindegyik elv sokszorosan bizonyított kísérletekkel és elméleti számításokkal. Kezdve a részecskefizikában a spin létezésével, az einsteini gravitáció elméletben a görbült terek fogalmával, a speciális relativitáselméletben az inercia és a nem inercia rendszerek transzformációs tulajdonságaival, az optikában a legrövidebb út elvével. Amiről érdemes több szót is ejteni az a kölcsönhatások kvantummező elmélete a kvantum elektrodinamika, mert ez is fontos alapköve a kepleron elvnek. Ez az elmélet úgy magyarázza a tér különböző pontjain lévő elektromos töltések kölcsönhatását, hogy minden töltésből fotonok áradnak ki, és ezek energiájának folytonos kibocsátása és elnyelése hozza létre a töltések között ható erőt. Itt a lényeg, hogy a távoli pontok között szükség van egy közvetítőre. A töltések közötti erőt közvetítő fotonok szerepét a gravitációnál a kepleronok veszik át, amit úgy lehet elképzelni, hogy a tömegek körül a tér forgásba jön, ami pedig létrehozza a tér görbületeit. De van egy fontos különbség a foton és kepleron között. Az előbbi rendelkezik saját energiával, ami csomagokban, kvantumokban szállítja az energiát, a tömegekből kilépő kepleronoknak nincs saját energiájuk, ezért nincsenek „csomagjai” sem, vagyis nem kvantumos a közvetítő mechanizmus. Az üres tér ugyanis nem rendelkezik saját energiával, ezért a tér szerkezetének megváltoztatásához sincs szükség energiára. Az energia csak akkor lép be a képbe, amikor az egyik fizikai objektum által létrehozott görbült térben egy másik tömeggel rendelkező objektum megjelenik. Gondoljunk például a Nap és a bolygók kapcsolatára. De van-e valamilyen kísérleti bizonyíték arra, hogy a kepleron kibocsátáshoz, vagyis a gravitációs kölcsönhatáshoz nincs szükség energiahordozóra? Igenis van ilyen! Hajdanán, amikor Einstein kidolgozta a tér görbületére alapított koncepcióját, erős kétkedés fogadta elképzelését, de a döntő bizonyítékot a Merkúr pálya anomális keringésére adott magyarázat adta meg. Ugyanis a Newton elmélet alapján nem lehetett magyarázni az ellipszis pálya elfordulását, a pálya precessziót, viszont Einstein egyenlete létrehozott a newtoni egyenlethez képest egy új tagot, ami kvantitatív magyarázatot adott az anomáliára. Ennek a tagnak pontos alakjára Schwartzshield adott nagyon szép matematikai levezetést. Viszont ez a relativisztikus korrekció könnyen származtatható az energia megmaradás elvéből figyelembe véve a tömeg és energia mc2 szerinti ekvivalenciáját. Arról van szó, ha két fizikai objektum, például a Nap és a Merkúr között gravitációs kötés alakul ki (22), akkor ennek hatására valami megváltozik a Nap és a Merkúr eredeti tulajdonságaiban, kismértékű többletenergiára, azaz többlet tömegre tesznek szert. Ez a tömegnövekedés pedig nagyobb vonzóerőhöz vezet és ennek mértéke pontosan megegyezik azzal, amit Einstein illetve Schwartzshield kiszámított. Arról van szó, hogy a kötött pálya kialakulása előtt a két égitestnek van egy bizonyos energiája, a kötés viszont létrehoz egy negatív energiát, azaz a gravitációs potenciális energiát. A teljes energia viszont nem változhat meg, ha nincs energia kisugárzás. Ez megköveteli, hogy a két égitest energia növekménye éppen kiegyenlítse a köztük kialakult vonzási energiát (23). Hasonlítsuk össze ezt a képet a Nap fúziós folyamatával, amikor hélium atommag rakódik össze protonokból és neutronokból. Ez a tömegdeficit jelensége, mert a hélium tömege kisebb, mint az összetevő nukleonok együttes tömege. A tömegdeficit adja meg azt a hatalmas energiát, ami a fúziót kíséri, mert a tömegekben „tárolt” energia csökkenése a kibocsátott sugárzási energia forrása. Ilyen kibocsátott sugárzási energia viszont nem lép fel, amikor a Nap befogja a Merkúrt, amiért a bolygó csapdázása előtti és utáni összes energia azonos marad! Ennek a ténynek óriási elvi jelentősége van, mert magyarázza, hogy miért sikertelenek azok a száz éve folyó törekvések, amelyek kvantumos folyamatokat keresnek a gravitáció magyarázatához is. A fizika szépségét az adja meg, hogy benne a különböző területek törvényei harmonikus egységet alkotnak. Ezt az egységet képviseli a kepleron koncepció is.

Köszönettel tartozom a riport szerkesztőjének és a Hatoscsatornának, hogy kifejthettem  a kepleron elmélet legfontosabb eredményeit, ami reményem szerint egy olyan folyamat elindítója lesz, ami elősegíti az új gondolatok befogadását egyrészt a széles nyilvánosság, másrészt a szakmai közösség számára. Úgy gondolom, hogy Bolyai gondolatainak továbbvitele ezt mindenkép megérdemli, hiszen a gravitáció 500 éves történetében nyit új fejezetet és alapvetően alakítja át világképünket az univerzum egész szerkezetéről.

 

Mi a kepleron

A kepleron elv olyan kozmológiát alapoz meg, amelyben világossá válik a sötét energia eredete, és amelyben nincs szükség a sötét anyag hipotézisére. Ennek kidolgozását hosszú kutatómunka előzte meg, melynek eredménye hat fontos fizikai elv összekapcsolásában jelenik meg. A keperon nem a meglévő fizikai törvények kiegészítése valamilyen új elvvel, hanem a már meglévő és jól bizonyított fizikai elvek egyesítése, összefoglalása.

  1. ábra. Fizikai tudományterületek összekapcsolása a kepleron elvben

A kiinduló pont a részecskefizikából származik, mely szerint minden részecske rendelkezik spinnel, azaz perdülettel, de arra nincs elfogadott magyarázat, hogy ennek mi az eredete. A válasz megtalálásához forduljunk az általános relativitáselmélet einsteini alapelvéhez, amely a gravitáció okát a tér görbületében látja. De miért görbült a tér a tömeg körül? Ez továbblendíti a kérdést a speciális relativitáselmélet felé, amely mozgó rendszerekben a Lorentz-kontrakció szabálya szerint rövidebb térkoordinátákhoz vezet a haladás irányában, amíg arra merőlegesen nincs változás. Kiterjesztve ezt az elvet körmozgásokra, olyan geometriát kapunk, ahol a kör kerülete nem 2rπ lesz, hanem rövidebb, és a rövidülés mértékével jellemezhetjük a tér görbületét. Kérdezzünk tovább! Miért követi a testek mozgása a görbült teret? Mert ott találja meg a legrövidebb utat, ahol a görbület a legnagyobb, így kapcsolódik be az optika törvénye is. A legrövidebb út keresése nemcsak a fény útját, hanem valamennyi test mozgását meghatározó elv. De hogyan jöhet létre erőhatás a tér távoli pontjai között? Ezt magyarázza a kvantumtér elmélet alapvetése: a kölcsönhatás valamilyen közvetítő mechanizmuson keresztül megy végbe, ahol az egyik objektum kibocsát valamilyen részecskét, amely fénysebességgel terjedve éri el a másik objektumot, melynek átadja energiáját. Az elektrodinamika kvantumelméletében (QED) ez a részecske a foton. Ennek szellemében a gravitációnak is van közvetítője, ez a kepleron, amit úgy értelmezünk mint a tér spinnel és tömeggel nem rendelkező forgását. A forgás kerületi sebessége a Kepler törvényt követi – innen származik az elnevezés. Ez a forgás formálja meg a tér görbületi struktúráját. A kölcsönhatás pedig úgy alakul ki, hogy az egyik tömeggel rendelkező fizikai objektum – valamilyen elemi részecske, vagy azokból felépülő rendszer – kibocsátja a kepleronnak nevezett forgási állapotot, amely a fotonhoz hasonlóan fénysebességgel terjed a térben, ez pedig térgörbületet idéz elő a kölcsönhatásban lévő másik objektum helyén, ahol a jelenlevő tömeg potenciális energiához jut. A tér kepleronnak nevezett forgási állapota folytonos (nem kvantált) kölcsönhatást hoz létre, összhangban azzal, hogy a gravitációról szerzett információnk is folytonos jellegű.  Megjegyzés: az információ szerkezete határozza meg a szükséges matematikai struktúrát, nem pedig fordítva. Lásd, a gravitáció kvantumalapú térelméletének kidolgozására tett erőfeszítések immár százéves kudarcát!

  1. ábra. Fizikai elvek összekapcsolása a kepleron modellben
  2. ábra. A kepleron elvhez vezető kérdések

Létezik azonban a térforgásnak részecskegeneráló képessége is, amikor a kerületi sebesség megegyezik a fénysebességgel. Ebből a forgásból ered a részecskék töltése, tömege és a spin is. Ez utóbbi ad választ ad az induló kérdésre is: milyen fizikai forgás van a spin létrejötte mögött. A fénysebességű forgás ugyanis nullára zsugorítja a kör kerületét, vagyis extrém mértékű görbület keletkezik, amely épp akkora centripetális erőt hoz létre, amely ellentételezi a forgás által kiváltott centrifugális erőt. A kepleron kilépését a fizikai objektumból úgy értelmezhetjük, hogy a fénysebességű forgás parányi hányada – erősen lelassulva – átlép a részecske határán.

 Végül eljutunk a hatodik fizikai elvhez, melyet a kozmológia vet fel az univerzum gyorsulva tágulásaként. E szerint a térnek két alapvető mozgási állapota van: az egyik a forgás, mint a gravitáció forrása, a másik a tágulás. Azt az erőforrást, ami a tágulást létrehozza, nevezték el a kozmológiában sötét energiának. De ez honnan származik? A kérdésre mindmáig nincs válasz, viszont a kepleron elv erre is világos magyarázatot ad! A sugár irányú mozgás a sugár rövidülése miatt megfordítja a tér görbületének előjelét, és így a gravitációs vonzást taszítás váltja fel. De ez mekkora távolságban lép fel? Ott, ahol a távolsággal csökkenő Kepler sebességet utoléri a távolsággal növekvő tágulási sebesség. A Tejút tömegére támaszkodva azt kapjuk, hogy ez a távolság meghaladja a galaxisok teljes méretét, de kisebb a galaxisok közötti távolságnál! Ezért a galaxison belül a gravitációs vonzás az úr, de a galaktikák már taszítják egymást. Ennek a taszításnak van egy furcsa tulajdonsága: nem csökken a távolsággal, sőt amikor a tágulási sebesség közel kerül a fénysebességhez, relativisztikus erősödés jön létre. Emiatt a sok százmilliárd galaxis taszító kölcsönhatása mind-mind összeadódik szétfeszítve az egész univerzumot.

  1. ábra A gravitációs erő távolságfüggése a fényév logaritmusában. Baloldalon a Newton törvény szerinti vonzó erő, középen a gyenge, egyenletes taszítási erő, jobboldalon a taszítási erő relativisztikus megugrása 13,78 milliárd fényévhez közeledve

Így fejtjük meg a sötét energia titkát, ez nem más mint a galaktikák között fellépő antigravitációs taszítás, és ennek mértéke a kozmológiai számítások szerint nagyságrendileg haladja meg a látható anyag Mc2 energiáját. Ennek oka, hogy a taszítási energiát alapvetően az univerzum határán lévő és közel fénysebességgel távolodó galaxisok hozzák létre a relativisztikus tömegnövekedés által (lásd 4. ábra).

A galaktikák közötti taszítás hozza létre azt az erőt is, amit a jelenlegi kozmológia a hipotetikus sötét anyagnak tulajdonít. A hatalmas számú (több százmilliárd!) galaxis együttes hatása gigászi erővel nyomja össze a csillagászati objektumokat, vagyis nem kell kipótolni a gravitációs vonzóerőt sötét anyaggal, hogy magyarázzuk a spirál-galaxisok stabilitását, a nagy centrális tömegsűrűséget, vagy a felfokozott gravitációs lencsehatást. Így jutunk el olyan kozmológiához, amelyben láthatjuk az univerzum minden létező anyagát, amelyből megérthetjük, hogy honnan is származik az univerzum gyorsuló tágulását előidéző hatalmas energia! Ez már a világosság univerzuma lesz és nem a sötétségé, a sötét anyagé, a sötét energiáé.

Mikrovilág misztikumok nélkül: A harmadik kvantálás

Könyvbemutató

Könyvbemutató

2023 március 11, Józsa Galéria

Miért kerül elő a miszticizmus kérdése a mikrovilág fizikájában?

A modern fizika eszköztára rengeteg információt nyújt számunkra a mikrovilág szerkezetéről és folyamatairól, de jelentős eredmények mellett jókora adósság halmozódott fel, mert nem történt meg a fogalmi rendszert hozzáigazítsa az új információkhoz. A könyv szemléletmódjában azt a kapcsolati láncot keresem, amelyik az elérhető információból indul ki, keresi az annak megfelelő fogalmi rendszert és végül eljut a kvantitatív megfogalmazáshoz a matematika eszköztárás felhasználva. Gondolkodásunk természetes módon ragaszkodik, ahhoz a fogalmakhoz, ami egyrészt a hétköznapok tapasztalatain alapul, másrészt a klasszikus fizika eredményei sugallnak. A problémát az okozza, hogy minden fogalomnak meg van a maguk érvényességi területe, és nincs arra garancia, hogy egy korábban jól bevált fogalom változtatás nélkül alkalmazható legyen egy új területen.

  • És ez miért baj?

A helyes fogalmak nélkül nem igazán értjük a mikrovilág jelenségeit, és még kiváló fizikusok is hajlamosak arra, hogy elkalandozzanak más területekre, például kereshetik az élet eredetét, vagy az agy működésének rejtelmes folyamatait, amit valójában nem értenek, de mégis azzal próbálkoznak, hogy az egyik ismeretlen jelenséget visszavezessék egy másik kevéssé megértett okra. Így kerülnek elő olyan spekulációk, amely a kvantumvilág jelenségeire akarják visszavezetni az élet és az agy ismeretlen jelenségeit. Nem az a baj, hogy erre törekszenek, hanem az, ha ennyivel megelégszenek, és nem keresik meg a tényleges magyarázatot.

A modern fizika vadhajtásának tartom az egyre bonyolultabb, egyre összetettebb matematikai struktúrák hajszolását. Pedig a cél nem a matematika, a matematika eszköz, a matematika nyelv, amelyben a fizikai gondolatok kvantitatív formát öltenek. A törekvés, ami a könyv megírásához vezetett, hogy előbukkanjon a fizikai lényeg a matematikai formulák dzsungele mögül.

  • Miért van egyáltalán szükség új fogalmi rendszerre a mikrovilágban?

A fő ok a megszerezhető információ eltérő jellegéből fakad! Nézzük ehhez a mozgási pálya fogalmát! Abból indulunk ki a klasszikus fizikában, hogy a mozgás során a hol és a mikor kérdésére pontos választ adhatunk anélkül, hogy ezzel megzavarnánk a test eredeti mozgását. Például a labda útját videóra vehetjük, vagy távcsövünkkel folytonosan nyomon követhetjük egy égitest útját.  Ez alkotja meg a pályafüggvényt, amiből bizonyos dolgokat meghatározhatunk, így a mozgási energiát, vagy az impulzust, valamint keringő, vagy forgó mozgások esetén a forgási impulzust, vagyis az impulzusnyomatékot. Ha ismerjük a testre ható erőt, akkor ezt hozzáadhatjuk a mozgási energiához és eljutunk a következtetéshez, hogy az energia megmarad. Hasonló megmaradási elvekhez juthatunk el az impulzussal és annak nyomatékával is. Azt mondhatjuk, hogy megtaláltuk a mozgás, a változás mögött az állandóságot kifejező fizikai mennyiségeket.

  • De mi a helyzet a mikrovilágban, például hogyan mozog az elektron az atomban?

Erről információt csak akkor kapunk, amikor az elektron átugrik az egyik állapotból egy másikba és kibocsát egy fényjelet. Szemben a makrovilággal a nyerhető információ nem folytonos, azt mondhatjuk, hogy kvantumokban érkezik. De mit mondhatunk ezekről az állapotokról, amikor éppen nincs ugrás? Valójában semmit, ezt csak találgathatjuk! Tudjuk, hogy milyen a potenciálfüggvény és kiindulhatunk a megmaradási elvekből. Tudjuk, hogy az energia megmarad, de nem ismerjük a mozgási pályát, ezért megfordítjuk a logikai sorrendet és nem azt mondjuk, hogy az energia megmarad, hanem azt kérdezzük, hogy mi az, ami megmarad. Így válik a pályából korábban meghatározott energia kérdőjellé, amelynek matematikai megfelelője az operátor. Valójában a kvantummechanika alapegyenlete, a Schrödinger egyenlet, az energiamegmaradás kérdő mondata! A kérdésre azonban többféle válasz adható. Amikor mérést végzünk, akkor a lehetséges válaszok egyikét találjuk meg. Hasonló a helyzet, amikor kitöltünk egy totószelvényt. Az esélyeket latolgatva írhatunk 1, 2 vagy X-et a szelvényre, mert három lehetőség közül választhatunk. De amikor a bíró lefújja a meccset, csak egyetlen eredmény marad. Nem arról van tehát szó, amit a koppenhágai iskola állít, hogy a mérés miatt összeomlik az állapotfüggvény, csupán arról, hogy a feltett kérdésre már egyértelmű választ kaptunk. De mi az az állapotfüggvény, amiről beszél a kvantummechanika? Mivel az un. stacionárius mozgásállapotról nincs időbeli információnk, így az időt felváltja egy új dimenzió: a valószínűség, ami kifejezi a térbeli tartózkodási esélyeket. A kvantummechanikában ezért az időbeli egymásutániságot felváltja az egymásmellettiség elve.

További kérdés kapcsolódik az információ kvantált jellegéhez. Fogalmi rendszerünknek is a kvantáltsághoz kell kapcsolódni, sőt ezt kell tükrözni az alkalmazott matematikai formalizmusnak is. Ezért lett „kvantált” a kvantummechanika formalizmusa. Ide tartozik a modern fizika évszázados küzdelme is, amely a mikrovilág kvantumos elmélete alapján próbálja megírni a gravitáció kvantumelméletét is. Mindmáig sikertelenül. Miért? Ennek oka is az információ jellegében van: a gravitációról kizárólag folytonosan érkező tapasztalatokból értesülünk. A folytonos információhoz pedig folytonos elmélet dukál, ezt alkotta meg Einstein az általános relativitáselméletben.

 

  • Milyen példákkal illusztrálja a könyv ezeket a kvantummechanikai elveket?

Itt most három példát emelnék ki. Az elsőt a kémia veti fel. Vegyünk egy síkszerkezetű molekulát, például a benzolt, amelyet hat egymáshoz szabályos hatszögben összekötött szénatom alkot, és mindegyikhez egy-egy hidrogénatom kötődik. Az elektronok egyik típusához, amit p pályának nevezünk, olyan valószínűség eloszlás tartozik, amiben a gyűrű alatt és felett egyforma a valószínűség, de nulla annak esélye, hogy az elektron a síkban lenne. Felmerül a kérdés, hogyan tud az elektron a sík alatti pozícióból átkerülni a felsőbe, ha közben nem lehet a gyűrű síkjában? Ez egy tipikus kérdés, amikor megszokott makroszkopikus fogalmainkat belevisszük a mikrofizikába. A stacionárius állapotban nincs időbeliségről szó, de gondolkodásunk a megszokott sablonokat követi. Miért beszélhetünk például a sík alatti és feletti pozíciókról? Amikor van erről információnk! Könnyű megkülönböztetni, hogy mi van az asztal alatt és felett, mert a gravitáció útbaigazít. De ha felrajzolunk egyetlen benzol molekulát, akkor nincs olyan információnk, ami különbséget tenne az alatt és a felett között, vagyis ez a fogalom értelmét veszti. Ha mégis ragaszkodunk hozzá, arra azt a választ kapjuk, hogy a két esély egyforma lesz.

  • Mi a következő példa?

A másik példát vegyük az elektromosság területéről!  Nyomjuk meg a villanykapcsolót és a lámpa azonnal világítani kezd. Valójában ez is egy kvantummechanikai jelenség, amit a szakirodalom alagút effektusnak nevez. Miért? Ugyanis, a kapcsolóban az elektromos vezeték korrodeál, így létrejön egy szigetelő réteg a kapcsolóban, amit nem tudna átugrani az elektron a szokásos hálózati feszültség esetén. A klasszikus fizika időbelisége jelenik meg, amikor arra gondolunk, hogy olyan nagy a potenciál gát, amihez kevés az elektron mozgási energiája. A kvantummechanikai állapot viszont azt jelenti, hogy bizonyos valószínűséggel az elektron már eleve ott van a szigetelő réteg mindkét oldalán, és az elektron csupán az indító lökésre vár, hogy meginduljon. Az elektron tényleges mozgása a vezetékben lassú, órákat kellene várni, hogy megérkezzen a lámpához. A gyors megérkezés oka, hogy nem kell végigvándorolni az elektronoknak a hosszú utat, mert eleve olyan állapotban van az elektronrendszer, ahol az eloszlás a kapcsolótól a lámpáig ér, és csupán az indító lökésre van szükség, hogy a lámpa izzószálában is meginduljon az elektronáramlás.

       

Melyik a harmadik példa?

Harmadik példám egy alapvető kvantummechanikai problémához vezet, amit aktuálissá tesz, hogy a legutóbbi Nobel díj egyikét egy francia fizikus Alen Aspect kapta meg. Évszázados vita, amit hajdanán még Einstein indított el, aki két társával együtt nem nyugodott bele a kvantumvilág véletlen jellegébe és javasolta a kvantummechanika rejtett paraméterrel való kiegészítését, ami determinisztikussá teheti a véletlennek tartott folyamatokat is. Ez az EPR paradoxon. Különböző számítások azonban kimutatták, hogy ez a feltevés a kvantummechanikai számításokkal összeegyeztethetetlen eredményre vezet. Itt jön a képbe Aspect kísérlete, aki egyszerre két fotont indított útjára, és a kiindulási helyzethez képest egyenlő távolságban mérte a fotonok un. polarizációját és erős korrelációt kapott a két mérés között, szemben a kvantummechanikai várakozással, mely szerint nem lehetne ilyen determinisztikus kapcsolat a két eredmény között. Ez szülte meg az összefonódott kvantumállapot fogalmát, mely szerint a két foton szétválás után sem engedte el egymás kezét, és amikor az egyik foton belekényszerül az egyik polarizációs állapotba, az késlekedés nélkül átviszi a másik fotont az ellentétes polarizációba. Ez hozta be a kvantummechanikába a teleportálás ötletét: hozzunk létre valamit a közelünkben és akkor annak pandantja majd tőlünk távol is megjelenik. Bár ez az ötlet nagyon divatos lett, amit a Nobel díj odaítélése is mutat, szerintem tévedésen alapul az egész: a kvantummechanikai véletlen elv addig érvényes, amíg kizárólag csak kvantum információval rendelkezünk. Két dogot kell ugyanis figyelembe venni, az egyik egy megmaradási elv, ami a polarizációra vonatkozik. Amikor két foton létrejön, akkor a két polarizációs irány ellentétes. Valójában nem tudjuk, hogy konkrétan milyenek ezek az irányok, de az biztos, hogy ellentétesek, ha egyenlő távolságban végezzük a mérést a kibocsátási helyhez képest. A másik tényező a szerezhető kvantum információ kiegészülése makroszkopikus információval. Ez a külső információ onnan származik, hogy a mért polarizációs irány a műszer által kijelölt irányra vonatkozik, viszont a két műszer iránya egymáshoz képest nem véletlenszerű, hanem azonosnak választott, ennek beállítása pedig már makroszkopikus megfigyelésen alapul.  Ezzel kilépünk a kvantummechanikai véletlen világából a makrovilág determinisztikus felfogása felé, és érthetővé válik a két foton polarizációja között megfigyelt kapcsolat. A könyvben ilyen és ehhez hasonló jelenségeket sorolok fel

  • A könyv alcíme a harmadik kvantálás, mit kell ezen érteni?

A könyv a gondolkodás különböző fázisait követi a fizikán belül. Amikor az egységes világ megértésére törekszünk, először részeire kell bontani. Egymástól elválasztott fogalmakat alkotunk meg. Képzeljünk magunk elő fogalmi dobozokat, ilyen doboz a tér, ilyen az idő, de ilyen a fizikai objektumok fogalma is. Amikor mozgásról beszélünk, akkor ezeket a dobozokat vesszük elő. A könyv általam írt része négy nagy fejezetből áll. Kezdődik a kvantumfelfogás előtti klasszikus fizikai törvényekkel. Ebben a mozgásokat az említett három doboz segítségével írjuk le. A relativitáselmélet már összeköti a teret és az időt, amihez egy kulcsot használ, ez a kulcs a fénysebesség állandóságának elve.

Ezt követi az első kvantálás. Ehhez szükségünk van új dobozokra, az egyik az idő helyére kerül, ez a valószínűség, amiről már beszéltem, a fizikai objektumok dobozában megjelenik az elemi részecskék világa is, de ennek két rekesze van, az egyikben vannak amelyek kölcsönhatnak, például az elektronok, a másik rekesz tartalmazza a kölcsönhatást megvalósítóit, például a fotonokat . Az első kvantáláson a már említett Schrödinger egyenletet értjük. Ebben még külön-külön szerepel a tér és idő doboza és a részecskéké, de már a valószínűség doboza váltja fel az időét. Az első kvantálásnak is van relativisztikus változata, ez a Dirac egyenlet. Ebben már a négydimenziós téridőben fogalmazzuk meg a mozgásegyenleteket, amely használja a valószínűség dimenzióját is. A könyv harmadik fejezete a második kvantálás már összenyitja a részecskék két dobozát, összekapcsolja az elektronokat és a fotonokat, itt a kulcs az oszcillátorok fogalma, amely egylényegűvé teszi a két részecske típust, amelyek kölcsönösen átalakulnak egymásba. Ezt az elméletet nevezzük kvantum elektrodinamikának, illetve mező elméleteknek. A könyv utolsó, negyedik fejezete további összenyitást hoz létre, ebben már nem különül el a téridő és a részecskék világa, hanem egy nagyobb egységet alkot. Ennek kulcsa pedig a fénysebességű forgások elve. Ez a fejezet már lényegesen túlmutat a jelenleg elfogadott fizikai világképen. A harmadik kvantálás az a módszer, amelyben egységes keretek között érthető meg valamennyi elemi objektum szerkezete és viselkedése.

        Merre tovább?

Amikor a könyv megírásához kezdtem, úgy gondoltam, hogy ez lesz az utolsó ecsetvonás, amivel a végére jutok a fizikai elvek felgombolyításának. De teljesen váratlanul felötlött bennem a gondolat, vajon a harmadik kvantálásban kifejtett elvek nem vihetnek tovább a mikrovilágból az univerzum egészének nagy kéréseihez is? Kiderült, hogy igen! És ezáltal forradalmilag új kozmológiához juthatunk, ezért megfogalmazódott bennem az igény, hogy szükség lenne egy új könyv megírására is. Talán még lesz rá időm!

A női dimenzió

A „Női dimenziók” című magazinban megjelent két írásom, ami a blog két korábbi Írásán alapul. Elérhetősége:

https://www.femmeharmone.com/a-noi-dimenzio/ii-evfolyam-3-szam/tudomany/rockenbauer-antal-a-modern-fizika-kopernikuszi-paradigmavaltasa-es-kovetkezmenyei-a-vilagkepunkre/

Cím a blogban: „A fizika egységes fogalomrendszere”

ROCKENBAUER Antal: A modern fizika kopernikuszi paradigmaváltása (és következményei a világképünkre)

A női dimenzió:  II. évfolyam 3. szám, 93-107, (2022)

Cím a blogban: „A sötét anyag nem létezik”

ROCKENBAUER Antal: Sötét anyag nem létezik a kepleron-koncepció alapján

A női dimenzió:  II. évfolyam 3. szám, 108-119, (2022)

Link a blog korábbi írásaira

 

 

 

 

Mikrovilág misztikumok nélkül

A harmadik kvantálás

Megjelent az új könyvem a Scolar Kiadó gondozásában:Mikrovilág misztikumok nélkül, A harmadik kvantálás

 

A könyves boltokban a könyv elérhető.

A fülszöveg:

:

Sokan úgy gondolnak a modern fizikára, amely tele van érthetetlen törvényekkel és bonyolult matematikai formulákkal. Ez a könyv megpróbálja bizonyítani, hogy a fizika törvényei alapjába véve egyszerűek, és mentesek a misztikus fogalmaktól. Ez ugyanúgy érvényes a klasszikus fizikára, mint a kvantummechanikára, a relativitáselméletre és a részecskefizikára. Központban a kvantum fogalma áll, ennek fejlődését követhetjük nyomon, amíg megérthetjük, hogy fizikai gondolkodásunk alapja többé nem a tehetetlen tömeg, hanem a tömegalkotó fénysebességű mozgás. Ne azt keressük, hogy mi mozog, hanem a mozgásban találjuk meg az anyag alkotóelemeit, a részecskék varázslatos világát.

Korábbi bejegyzések

A sötét anyag nem létezik!

 

A sötét anyag nem létezik!

A kepleron koncepció

Absztrakt

A kepleron koncepció alapján értelmezzük az univerzum tágulásának Hubble törvényét, összevetve a kozmológia sötét anyagon és sötét energián alapuló elméletével. Azt találtuk, hogy számos csillagászati megfigyelés (az Androméda köd közeledése, a spirális karokban a csillagok azonos keringési sebessége, a galaxis forgások létrejötte, csillaghullámzás a Tejútban, a Tejút lapos felépítése, a galaxisok számának nagyságrendi becslése) egyaránt a kepleron modell mellett szól, és ezért nincsen szükség a sötét anyag hipotézisére. A galaxisok stabilitását és szerkezetét nem a vonzóerő megnövelése magyarázza, hanem külső kompresszió, amit a távoli galaxisok idéznek elő. A galaxisok közötti antigravitáció független a távolságtól, összhangban az Einstein által bevezetett, a térben mindenütt jelenlevő kozmikus állandóval. A sötét energia valójában a galaxisok közötti taszítási energia. A kozmológia elméleti alapjait is újra kell gondolni, ősrobbanás helyett a kezdeti őskáoszból indulhatott el egy szétválási folyamat, amely a galaxisok kialakulását okozta. Az őskáosz magas hőmérsékletén az áramló töltések foglyul ejtették a fényt, majd a lehűlés vezetett el a fény kiszabadulásához, amit a mikrohullámú háttérsugárzás jelez.

Bevezetés

Honnan tudunk a sötét anyag létezéséről? A legfőbb bizonyítékot a spirál galaxisok szerkezete adja. Különböző csillagászati módszerekkel határozták meg, hogy mekkora a csillagok keringési sebessége az egyes spirális karokban, amiből az derült ki, hogy kevés a galaxis tömege a centrifugáliserő kiegyenlítéséhez, és emiatt a karoknak le kellene szakadni. Ebből következtettek arra, hogy a valódi tömeg jóval nagyobb – mintegy hatszorosa annak –, amit csillagászati eszközökkel megfigyelhetünk, vagyis létezik olyan anyag is, amely nem látható, de hozzájárul a gravitációs erőhöz, anélkül, hogy részt venne az elektromágneses kölcsönhatásban. Ez az anyag azonban bujkál előlünk, nincs nyoma a részecskefizikai átalakulásokban sem. Kapott viszont már egy nevet a sötét anyagot alkotó részecske, ez a nevezetes WIMP (Weakly Interacting Massive Particle). Viszont ezeket a részecskéket is hiába kutatták változatos kísérletekben, nem sikerült nyomukra bukkanni. A sötét anyag létezésére más jelenségek is utalnak, így a csillaghalmazok anomális tömegeloszlása, és a gravitációs lencsék megnövelt intenzitása.

Mi az a sötét energia?

A sötét anyag ikerfogalma a sötét energia. Ez a két különös jelenség az általánosan elfogadott kozmológiai elmélet, a Λ-CDM (Lambda Cold Dark Matter), központi eleme. Itt lambda az Einstein által megfogalmazott általános relativitáselméletben feltételezett kölcsönhatás, a kozmológiai állandó. Einstein abból indult ki, hogy kell egy olyan tag is az egyenletben, amely megakadályozza az univerzum csillagzatait, hogy egymásba zuhanjanak, ezért feltételezett egy mindenütt egyenletesen ható taszítási tagot. Ez a kölcsönhatás azonban nem kapcsolódik semmilyen más fizikai jelenséghez, vagyis nem világos a fizikai eredete. Evvel érdemelte ki a sötét energia elnevezést. Einstein koncepciója kezdetben erősen vitatott volt, sőt maga is elméletének legnagyobb hibájának tartotta, de a távoli galaxisokból érkező fény vörös eltolódásának távolságfüggése arra mutatott, hogy az univerzum tágul, ami visszaigazolta a sötét energia létezését.

A kozmológia másik fontos szereplője a sötét anyag. Ebben CDM azt jelenti, hogy az univerzum forró korszaka után lehűl, és ebben követi a „hideg” sötét anyag. Arra viszont nincs magyarázat, hogy a sötét anyag mitől hűlne le, ha nem vesz részt a gravitáción kívül más kölcsönhatásban.

A gravitáció einsteini magyarázata

A sötét energia titkának megfejtéséhez induljunk ki az általános relativitáselmélet alapelvéből, amely a gravitációt a tér görbületéből vezeti le. A testek mozgási pályája a tér görbületéhez igazodik. Ennek okát az optikából ismert legrövidebb út elve adja meg. A fény útja megtörik, ha nagyobb törésmutatójú közegbe, például a levegőből a vízbe érkezik. Ennek oka, hogy a vízben lassabb a haladási sebesség, emiatt hamarabb ér célba a fény, ha a gyorsabb közegben megnöveli útját a lassú közeg rovására. De ez a törvény nem csak a fényre, hanem a tömeggel rendelkező testek mozgására is igaz. A tömeggel bíró anyagok is arra veszik az irányt, ahol gyorsabb az előrehaladás, ezt pedig a nagyobb görbületű térben találják meg.

A gravitáció magyarázata kepleronokkal

De miért rövidebb a pálya ott, ahol nagyobb a görbület? Erre magyarázatot a speciális relativitáselméletből származó Lorentz kontrakció adja meg: a kontrakció mindig a mozgás irányában következik be, és nem érinti az arra merőleges irányokat. A tömeg térgörbítő hatását arra vezethetjük vissza, hogy a tömeg körül forgásba jön a tér. Ez a forgás gömbszimmetrikus, azaz nincs kitüntetett irány, sebességét pedig a Kepler törvény határozza meg, amely szerint v2R állandó lesz, melynek nagyságát a GM szorzat határozza meg Newton gravitációs törvénye szerint, ahol G = 6,67x10ꟷ11 m3/kg·s2 az általános gravitációs állandó és M a tömeg. Ezt a térforgást kapcsoljuk össze a mezőelméletek alapkoncepciójával, amely úgy értelmezi a kölcsönhatásokat, mint amelyeket bizonyos bozon típusú részecskék – elektromágneses kölcsönhatásnál a fotonok – közvetítenek.  Ez úgy történik, hogy a töltéssel rendelkező részecskék folytonosan virtuális, tehát közvetlenül nem detektálható, fotonokat bocsátanak ki és nyelnek el, amelynek eredményeként vonzás vagy taszítás jön létre a töltések között. A gravitációnál a tömeg játssza el ugyanazt a szerepet, amit az elektromágneses kölcsönhatásban a töltés. Ez bocsátja ki és nyeli el az említett forgásokat, amelyek a Kepler törvénynek engedelmeskednek. Indokolt ezeket a forgásokat Kepler tiszteletére kepleronnak nevezni. Ezek a kepleronok azonban nem rendelkeznek spinnel, mint a bozonok és fermionok, nincs tömegük és energiájuk sem, hatásukat azáltal fejtik ki, hogy megváltoztatják a tér geometriáját. A kepleronok terjedési sebessége ugyanúgy c, mint a fotonoknak, viszont a forgások kerületi sebessége ennél jóval lassabb. A kepleronok intenzitása a fotonokhoz hasonlóan a távolság négyzetével csökken, arányos az M tömeggel a GM/R2 szabály szerint.  Ezt fejezi ki a v2R = GM összefüggés, amit a bolygómozgás törvényeiből ismerhetünk. Ha szemléltetni akarjuk a keringő mozgást, dobjunk be egy fadarabot az örvénylő vízbe. Ott megfigyelhetjük, hogy a fadarab együtt forog az örvénylő vízzel. De ugyanígy ragadja magával a légörvény a faleveleket is. Ezekben a példákban tömeggel rendelkező közegek szerepelnek, ahol épp emiatt jön forgásba a fadarab, vagy a falevél, de miért úsznak együtt a bolygók a Föld körül forgó térrel, hiszen a térnek nincs is tömege? Itt lép be a képbe a Lorentz kontrakció.

Mi a radiális térgörbület?

Ennek megértéséhez vezessük be a radiális térgörbület fogalmát! Az egyenes koordinátákkal jellemzett euklideszi térben a kör kerülete 2Rπ. Ha v a kerületi sebesség, akkor a kerület hossza  mértékben rövidül a Lorentz kontrakció miatt, szemben a mozgásra merőleges sugárral, amely változatlan marad. Ez alapján definiálhatjuk a görbületet:

Radiális térgörbület = 1 – (kerület/2Rπ)2 = v2/c2

Ezt a görbületet c2-tel szorozva és felhasználva a v2 = GM/R Kepler szabályt, megkapjuk a gravitációs potenciált és ezt az R változóval deriválva, majd az erőhatást a keringő test m tömegére alkalmazva, visszakapjuk a Newton-féle gravitációs erőtörvényt. Ezzel demonstráltuk, hogy a kepleronok a Lorentz kontrakció révén tényleg létrehozzák a jól ismert gravitációs erőt.

Hubble tágulási törvénye

Annak birtokában, hogy a Lorentz kontrakció révén származtatni tudjuk a gravitációs erőt, már továbbléphetünk a tér egy másik mozgására, amit a Hubble féle tágulási törvény ír le. E szerint a galaxisok távolodási sebessége arányos a közöttük lévő távolsággal, azaz v = HR. A térrel együtt a kepleronok sugara is növekszik, de ennek görbítő hatása fordított a körforgáshoz képest: ekkor a sugarat csökkenti le a kontrakció, míg a kerület hossza változatlan marad! Emiatt a térgörbület előjele negatív lesz: –v2/c2 . Ez az összefüggés közelítés, ha v összemérhető a fénysebességgel, akkor a görbület nagysága már nagyobb lesz ennél. A negatív görbület pedig azt jelenti, hogy a tágulás miatt a galaxisok taszítani fogják egymást, vagyis intergalaktikus antigravitáció jön létre. A galaxisok mozgása ezért úgy talál rá a rövidebb útra, ha távolodnak egymástól! Ezt értelmezzük úgy mint az univerzum tágulását.

A Hubble törvény azonban nem relativisztikus, mert elvben megenged akkora sebességet is, ami meghaladja c-ét. Ezt avval indokolják, hogy a tér tágulása nem jár információtovábbítással. Csillagászati érvvel azonban ezt nem lehet igazolni. Az a tértartomány, ahol klasszikus csillagászati módszerekkel lehet a távolságot meghatározni, nem több 100 millió fényévnél, és a 10 illetve 100 millió fényévnyi zónában lehetett igazolni a Hubble-féle arányossági törvényt a távolság és a vöröseltolódás között. Ezt az összefüggést sikerült kiterjeszteni szupernóvák tulajdonságainak vizsgálatával, ahol a fényerő csökkenéséből következtettek a távolságra, amit összevetettek a vöröseltolódás mértékével. Ez a módszer már közel 1 milliárd fényévre növelte meg a felső határt. Nincs azonban arra bizonyíték, hogy a galaxis távolodási sebessége tényleg nagyobb lehetne, mint amit elérhetnek a fizikai objektumok. A relativisztikus Hubble egyenlet alakja a következő:

Az 1 milliárd fényévnyi távolságnál a relativisztikus korrekció még nem éri el a sebesség század részét sem, amelynél a meghatározott távolsági és vörös eltolódási adatok szórása jóval nagyobb. A relativisztikus korrekció létezése vagy cáfolata így csillagászati módszerekkel nem igazolható, viszont annak helyességét több érv is alátámasztja. A jelenlegi kozmológiai elmélet szerint a 13,78 milliárd évnyi tágulás következtében jóval nagyobb lett az univerzum, mint amekkora távolságot a fény befutott, egyes becslések 93 milliárd fényévnyi értéket is adtak. Ez esetben viszont léteznek olyan galaxisok, amelyek között nincs gravitációs kölcsönhatás. Vagyis az univerzum nem egységes. Ilyen „szétszakadt” univerzumról már nem kell beszélni, ha a Hubble tágulási törvény is relativisztikus. A kepleron modell anomáliája is megszűnik, mert ekkor a radiális görbület mindenütt   lesz, vagyis szigorúan arányos marad a galaxisok távolságának négyzetével. Ennek fontosságát hamarosan látni fogjuk!

Inverziós távolság

Van azonban egy inverziós távolság, amin átlépve a gravitációt felváltja az antigravitáció. De mekkora ez a távolság? Akkora, ahol a forgás kerületi sebessége már kisebb lesz a tágulási sebességnél:

v2 = GM/R < H2R2

Innen származtathatjuk az inverziós távolságot:

R3inverzió = GM/H2

 Mekkora ez az inverziós távolság a Tejút esetében? A Tejút tömege M = 2,3x1042 kg, a Hubble állandó pedid H = 70 (km/s)/Mpc = 2,3x10ꟷ181/s.  Felhasználva ezeket az adatokat kapjuk meg az inverziós sugarat:

Rinverzió = 1 Mpc = 3,26 millió fényév

Miért közeledik felénk az Androméda köd?

Az inverziós távolságnak rendkívül fontos szerepe van az univerzum és a galaxisok szerkezetének felépítésében! A galaxisok átlagos távolsága ennél ugyanis nagyobb. Tehát az univerzumot egymást taszító galaxisok töltik ki, ez az oka a gyorsuló tágulásnak. De vannak kivételek is, ilyen a Tejút és az Androméda köd kettőse. A két galaxis távolsága ugyanis 2,5 millió fényév, vagyis közöttük még a vonzó gravitáció érvényesül, és ezért közelednek egymáshoz. Ez a csillagászati megfigyelés már önagában is meggyőzőn támasztja alá a kepleron hipotézist, de léteznek ezen túlmenően további bizonyítékok is.

Miért azonos a csillagok keringési sebessége a spirálkarokban?

A másik fontos megállapítás a taszító erő nagyságára vonatkozik. A kibocsátott kepleronok intenzitása GM/R2 szerint csökken a távolsággal, amit szorozva az R2-tel arányos térgörbülettel, azt kapjuk, hogy az intergalaktikus taszítási erő nem függ a galaxisok egymástól való távolságától! A relativisztikus Hubble törvény esetén ez pontosan így van, míg a klasszikus törvény esetén nagy távolság esetén még növekedne is a taszítás erőssége. Önmagában még az is rendkívül meglepő, hogy mindegy, vajon két galaxis között 10 millió, vagy 10 milliárd fényév a távolság, a közöttük lévő taszítóerő ugyanakkora. Viszont ez a tulajdonság magyarázatot ad az Einstein által bevezetett Λ kozmikus állandóra, amely mindenütt azonos az univerzumban.

Miért nincs szükség a sötét anyag hipotézisére?

Így jutunk el a sötét anyag és a sötét energia kérdéséhez is. A sötét energia többé nem sötét, mert világos magyarázatot ad létezésére az univerzum összes galaxisának együttes taszító ereje. Ez a taszítás felelős az univerzum gyorsuló tágulásáért is. De ugyanez teszi feleslegessé a sötét anyag feltételezését is. Miért? Mert a spirális galaxisokat nem a sötét anyag vonzóereje tartja egyben, hanem a külső extragalaktikus kompresszió, amit a környező sok milliárd galaxis hoz létre. Kiválaszthatjuk bármelyik galaxist, azt minden irányból rengeteg galaxis veszi körül. Az egyes galaxisok közötti taszítás ugyan nagyon gyenge, akkora amekkorát az univerzum határán, vagyis 13,78 milliárd fényévnyi távolságban várnánk a szokásos gravitációtól. Viszont a sok milliárd galaxis összegzett hatása már képes összepréselni a kiválasztott galaxist. Ennek mértékét jelzik a számítások, mely szerint a feltételezett sötét anyag mennyisége a látható anyag tömegének hatszorosát teszi ki. A galaxisokra ható külső nyomás azonban nem tökéletesen szimmetrikus (egyébként erre utal a mikrohullámú háttérsugárzás anizotrópiája is). Ez az anizotrópia forgatónyomatékot gyakorol az egyes galaxisokra. Ahol ez a forgatónyomaték jelentős, ott alakul ki spirálszerkezetű galaxis. Az extragalaktikus kompressziónak a centrifugáliserő ellenáll, ezért a spirális síkjában nagyobb a kiterjedés, (a Tejút esetén az átmérő 80 ezer fényévet tesz ki), viszont a síkra merőlegesen, ahol nem jön létre centrifugáliserő, a galaxis vastagsága jóval kisebb, nem haladja meg az ezer fényévet sem.

 

  1. ábra. Fent: a spirál galaxis felül nézetben, lent pedig oldalnézetben. A galaxis szerkezete lapos, középen viszont kidudorodik.

A 3,26 millió fényévnyi inverziós sugár arra is utal, hogy az ősrobbanás kezdeti szakaszában még nem lép fel az univerzális antigravitácó, ennek fellépéséhez több millió évre van szükség, mire az univerzum kiterjedése jelentősen meghaladja ezt a méretet.

A legfontosabb megfigyelés, ami egyértelműen bizonyítja, hogy nem a feltételezett sötét anyag vonzó hatása stabilizálja a spirális galaxisokat, hanem a külső extragalaktikus kompresszió, a csillagok keringési sebességétől származik. Ki lehetett ugyanis mutatni, hogy a keringési sebesség azonos a galaxis belső és külső spirálkarjaiban, a Tejút esetén például ez 220 km/s. Gravitációs hatással ez nem magyarázható, mert a Kepler szabály szerint a keringési sebesség a távolsággal csökken! A sötét anyag hipotézis ezt úgy próbálja értelmezni, hogy a sötét anyag eloszlása alapvetően eltér a látható anyagétól, ennek sűrűsége a külső karoknál dúsul fel. A magyarázat szerint, ez a speciális eloszlás okozza, hogy a sebesség karakterisztika „lapos” lesz. De miért más a galaxisokban a sötét anyag tömegeloszlása a látható anyaghoz képest? Erre bizony nem könnyű válaszolni.

 Az antigravitációs kompresszió viszont kézenfekvő magyarázatot kínál. A spirális karokban keringő csillagokra ható külső nyomást úgy kapjuk meg, ha a mindenütt jelenlevő intergalaktikus taszító erőt osztjuk a gyűrűszerű karok felületével, amely arányos az R keringési sugár és a galaxis karok d vastagságának szorzatával. Voltaképpen a spirális struktúrát alkotó gyűrűk összefonódásáról van szó. Mivel a d vastagság ugyanakkora a belső és külső spirálkaroknál, így a kompressziós nyomás fordítottan arányos a cetrumtól számított R távolsággal, hasonlóan ahhoz, ahogy a centrifugáliserő változik. Emiatt a keringési sebesség nem függ a galaxis centrumtól való távolságtól, egyezően a megfigyelésekkel. A spirális karok képződésének egyébként épp az a feltétele, hogy a sugár nagyságával ne csökkenjen a sebesség, mert a csökkenés miatt nagy lenne a lemaradás a külső pályákon a belsőkhöz képest, ami nem teszi lehetővé az összefonódást, és csak a Jupiter és Szaturnusz körül megfigyelhető gyűrűs struktúrák alakulhatnának ki a galaxis centruma körül.

Miért „hullámzik” a Tejút?

A legújabb csillagászati felfedezést a Tejút rendszer „hullámzásáról” is könnyen magyarázhatjuk az extragalaktikus kompresszióval. Az találták, hogy a Tejút síkjához képest a csillagok oszcillálnak felfelé és lefelé. Ennek oka, hogy a galaktikára ható kompresszió kissé különbözik a felület mentén, és az eltérő erőhatás a csillagok oszcilláló mozgását idézi elő. Ilyen mozgást csillaghalmazok ütközése is kiválthat, de ez csak átmenetileg okoz hullámzó kitéréseket.

Mi okozza a galaxis centrumának kidudorodását?

Érdemes még rámutatni, hogy a galaxis centruma kidudorodik, ott a vastagság mintegy tízszer nagyobb, mint a karoknál. Ez is összhangban van az antigravitációs kompresszióval. Mivel a kompressziós nyomás 1/R szerint változik, szemben az 1/R2 szerint csökkenő gravitációs vonzással, így a galaxis centrumában már a gravitációs vonzó hatás lesz az uralkodó a kompresszióval szemben, ami megengedi a csillagok eltérő keringését ebben a tartományban. Itt már nem az egész galaxis kollektív forgása, hanem az egyes csillagok keringése a galaxis középpontja körül, határozza meg az eloszlást.

Hány galaxis van az égen?

Térjünk még ki a Λ paraméter és a galaxisok közötti taszítási energia viszonyára! Az M1 és M2 tömegű galaxisok közötti taszító erő a kepleron koncepció szerint független lesz a távolságtól:

Ftaszítás = GM1M2H2/c2

 Az ehhez tartozó energiát úgy kapjuk meg, ha szorzunk az erő munkavégzése során megtett úttal, ami az univerzum határát jelenti. Ez a határ azonosnak vehető azzal az úttal, amit a fény az ősrobbanás óta megtett, mert ugyan az egyes kozmológiai modellek szerint nagyobb ennél az univerzum, de a külső tartomány objektumaival már nem jön létre kölcsönhatás, a gravitáció véges, c sebességű, terjedése miatt. Ha a relativisztikus Hubble szabályt alkalmazzuk, akkor ez a paradoxon fel sem merül, mert ez nem engedi meg, hogy az univerzum nagyobb legyen annál, mint amekkorát be tud futni a fény. A tényleges kölcsönhatási távolságot a c/H = 13,78 milliárd fényév adja meg. Ezt az úthosszat figyelembe véve a két galaxis közötti antigravitációs energia GM1M2H/c lesz. Ha a galaxisok száma n, akkor ez összesen n(n-1)/2 kölcsönható galaxis párt jelent.  Tételezzük fel, hogy a Tejút tömege megfelel az átlagos galaxis tömegnek, vagyis az univerzum teljes tömege nMTejút. Összeadva az összes galaxis-pár antigravitációs energiáját, kapjuk meg az univerzumra vonatkozó értéket:

Viszonyítsuk ezt a „látható” anyag nMTejútc2 energiájához. A jelenleg elfogadott arány a sötét energia és a látható anyag energiája között 13,3. Ezt alapul véve:

GnMTejútH/2c3 = 13,3

A Tejút tömege alapján a galaxisok száma n = 1,5x1012 körül lehet. Ez ugyan csaknem tízszer nagyobb, mint a jelenleg elfogadott 200 milliárdos szám, de a Hubble űrtávcsővel végzett felmérésekre hivatkozva van 2 billiós becslés is. A számításainkból következő adat tehát nagyságrendjében egyezik a csillagászati megfigyelésekkel, különös tekintettel arra, hogy a Tejút tömege is eltérhet a többi galaxis átlagától.

Sötét anyag helyett antigravitációs kompresszió!

A felsorolt jelenségek világosan mutatják, hogy nincs szükség sötét anyagra, mert az antigravitációs kompresszió jobb magyarázatot nyújt, továbbá arra is fény derül, hogy mi lehet a sötétnek nevezett energia eredete, ami nem más, mint a galaxisok közötti taszítási energiák összege. Itt nem foglalkoztunk a sötét anyag bizonyítékának tekintett további jelenségekkel, mint a csillaghalmazok anomális tömegeloszlása, vagy a gravitációs lencsék kérdése, de ezekben az esetekben is az extragalaktikus kompresszió, illetve az R2-tel arányos térgörbület legalább olyan jó magyarázatot adhat, mint a sötét anyagra épülő koncepció.

A gyorsulva táguló univerzum

Ha utána számolunk az univerzum korára jelenleg elfogadott 13,78 milliárd év és a csillagászati adatokból kapott Hubble állandó kapcsolatának, akkor meglepő összefüggést kapunk, mert TUniverzum = 1/H! A reciprok összefüggés persze várható, mert a nagyobb H érték esetén rövidebb idő kellett az univerzum kifejlődéséhez, de meglepő a pontos egyezés. Visszafelé gondolkodva, akkor jutnánk el a kezdőponthoz, ha a mostani sebesség állandó lett volna. Persze lehetett a múltban sokkal gyorsabb az inflációs szakaszban, ezután pedig lassulhatott a növekedés, de meglepő, hogy ennek átlaga épp a mostani érték.

De hogyan épül fel a Hubble törvény által feltárt sebességnövekedés? Állítsuk sorba a múlt üzeneteit! Amit most látunk a csillagokból, és amit a gravitáció üzen nekünk, az a múltból származik. A Nap néhány perccel korábbról üzen, a bolygók már órákkal, napokkal ezelőtt elindították az üzenetet, a közeli csillagok évekkel, a Tejút távolabbi részei már sok évezrede útnak indították a fotonokat és kepleronokat. Még régebbiek az Androméda köd és a többi galaxis üzenetei. Ez a retardációs idő a távolságból számolható: t = R/c. Minél hosszabb ez a t idő, annál nagyobb a fény vöröseltolódása, és a hozzá tartozó távolodási sebesség. Az időhöz viszonyított sebességváltozás a gyorsulás. Egyenletes gyorsulás esetén v = a·t = a·R/c = H·R, vagyis a gyorsulás:

a = H·c = 6,9·10ꟷ10 m/s2

A gyorsuló tágulás tehát nem azt jelenti, hogy a Hubble állandó növekszik, hanem azt, hogy az univerzum gyorsuló tágulása ekvivalens a Hubble törvénnyel. A gyorsuláshoz természetesen kell egy erő is, ami ezt létrehozza. Ez az erő a galaxisok között ható antigravitáció. Állandó gyorsulást akkor kapunk, ha a kölcsönhatásban résztvevő galaxisok száma változatlan. Ez akkor teljesül, ha a Hubble törvény is relativisztikus, vagyis a tágulási sebesség nem haladja meg a fénysebességet.

A múlt üzenetei „menetközben” megváltoznak, egyrészt a foton energiát veszít, ez a vöröseltolódás, másrészt, ha a „kézbesítési idő” több mint 3,26 millió év, akkor gravitáció helyett már antigravitációról szól az üzenet. Az üzenet viszont már azonos lesz, bármilyen messze van tőlünk a feladó.

Mi történt 13,78 milliárd évvel ezelőtt?

A jelenleg széles körben elfogadott kozmológia szerint, az ősrobbanás jelentette a kezdetet, amikor az univerzum egyetlen matematikai pontból áradt szét, de mennyire indokolt ez a feltevés a csillagászati adatok fényében? A megfigyelések valójában a galaxisok távolodási sebességére vonatkoznak, nincs viszont arra utaló jel, hogy növekszik-e közben a galaxisok kiterjedése is. Ha csak a galaxisok távolodnak, de nagyságuk nem változik, akkor a távoli múltban nem lehetett olyan parányi az univerzum, mint amit az ősrobbanási szcenárió feltételez. Igazában csak arról lehet szó, hogy valamennyi galaxis egyazon tértartományban zsúfolódott össze Ez óriási energiával járt és hatalmas lehetett az égi objektumok közötti vonzó erő az egybeolvadt százmilliárdnyi galaxis között. Ez ugyan összébb húzhatta az univerzum kiterjedését, akár egy fényévnél kisebb tartományra is, de ettől még nem lett pontszerű. Helyesebb inkább őskáoszra gondolni, amelyben a magas hőmérséklet megakadályozta a pozitív és negatív töltések összekapcsolását. A kavargó töltések csapdába ejtették a fényt, majd ebből a sötét kozmoszból indulhatott el a Nagy Szétválás. Ezt értelmezhetjük egyfajta ősrobbanásként. Az ősgalaxisok kialakulása és szétválása lecsökkentette a hőmérsékletet, ami előidézte a töltések egymásra találását, amiért a fény kiszabadult, az univerzum átlátszó lett. A kozmológia jelenleg elfogadott elmélete szerint ez 370 ezer évvel történt az ősrobbanás után. Ennek nyomát ma is megfigyelhetjük a mikrohullámú háttérsugárzáson keresztül.

Összefoglalás

Összegzésként megállapítható: több csillagászati megfigyelés (az Androméda köd közeledése, a spirális karokban a csillagok azonos keringési sebessége, a galaxis forgások létrejötte, csillaghullámzás a Tejútban, a Tejút lapos felépítése, a galaxisok számának nagyságrendi becslése) egyaránt a kepleron modell mellett szól, és ezért nincsen szükség a sötét anyag hipotézisére. A galaxisok stabilitását és szerkezetét nem a vonzóerő belső hipotetikus növekedése okozza, hanem külső kompresszió, amit a távoli galaxisok idéznek elő. A sötét energia pedig nem más, mint a galaxisok közötti taszítási energia.

A kozmológia elméleti alapjait újra kell gondolni!

A fizika egységes fogalomrendszere

Korábbi bejegyzések 

Előző bejegyzés

A fizika fogalmi rendszerének kialakulása hosszú történetre néz vissza. Először a klasszikus mechanika fogalomrendszere alakult ki, ami a makroszkopikus világból érkező megfigyeléseken alapul. Fordulatot hozott a fizika történetében, amikor eljutott az anyagi világ végső elemeinek feltárásához, viszont ez nem járt együtt a fogalomrendszer új eredményekhez való hozzáigazításával. Ennek az írásnak egyik célja, hogy az anyag elemi objektumai mellé társítsa a fogalmi világ alapvető építőköveit. A modern fizika arra törekszik, hogy felépítse a kölcsönhatások egységes elméletét, ehhez az út a fizika egységes fogalomrendszerén keresztül vezethet. Az írás másik célja, hogy bemutassa azt a törekvést, amely az egységes fizikai fogalomrendszer felépítésére irányul.

A mechanika fogalmai

A fizika fogalomrendszerét nem tudjuk szétválasztani a matematikai fogalmak fejlődésétől. Ennek nagyszerű példája Newton elmélete, aki kéz a kézben fejlesztette tovább a fizikát és a matematikát. Ennek kulcsfontosságú momentuma a folytonosság és az infinitezimális változás precíz megfogalmazása. Induljunk ki a tér és az idő fogalmaiból. A tér az egymásmellettiség világa, az idő az egymásutániságé. Amíg a tér pontja szimmetrikusak a felcserélésre, ez nem teljesül az idő esetén. A térnek nincs kitüntetett előrehaladási iránya, szemben az idővel. Ezt a távolság fogalmával mutathatjuk be. A térbeli távolság nem függ attól, hogy melyik pontból indulunk el a másik felé, ezért a távolságot mindig pozitív érték jellemzi. Amikor a háromdimenziós térben meghatározzuk a P(r’) = P’(x’,y’,z’) = és P(r) = P”(x”,y”,z”)  pontok távolságát, a komponensek négyzetösszegét képezzük:

A négyzetes  összefüggés megengedi a negatív értéket is a gyökvonásban, de mi pozitív mennyiségnek tekintjük a távolságot. Az idő dimenziójában az események között eltelt idő fogalmát használjuk, aminek előjel lehet pozitív és negatív is, attól függően, hogy a jelenből a jövő felé, vagy fordítva a múlt felé haladunk. Pozitív, ha t” későbbi idő, mint t’:

didő = t” – t

Ha megfordítjuk t’ és t” sorrendjét negatív értéket kapunk, ami azt fejezi ki, hogy az okozat előtörténetére vagyunk kíváncsiak, vagyis a múlt felé haladunk.

Folytonosság és infinitezimális változás

A térbeli és időbeli távolság nagyságát elvben tetszőlegesen kicsinyre választhatjuk, ez felel meg a tér és idő folytonos szerkezetének. Ez viszont mérésekkel nem ellenőrizhető kijelentés, hiszen a mérési pontosság nem lehet végtelen, ezért extrapolálunk, vagyis átvesszük a matematikából a folytonosság fogalmát, mely szerint a koordinátaváltozás tetszőlegesen kicsiny lehet. Így lép be az infinitezimális változás fogalma a fizikába, és ezen alapul matematikában a függvények differenciálási szabálya. Az egyébként bonyolult fizikai összefüggések az infinitezimális tartományban leegyszerűsödnek, minden összefüggés megfogalmazható egyszerű arányosság formájában. Ezt használta fel Newton is, amikor az erő fogalmát az erő által okozott gyorsulással – azaz az r(t) pályafüggvény idő szerint képzett második differenciálhányadosával kapcsolta össze:

F = m·(d2r(t)/dt2) = m·a

 Az arányossági tényező a tehetetlenség, vagyis a tömeg. A mechanika további fontos fogalma az impulzus (lendület), amit a sebesség és a tömeg szorzata definiál, és megadja, hogy egy mozgó test mekkora lökést gyakorolhat ütközéskor:

p = m·(dr(t)/dt) = m·v

A lökést úgy jellemezhetjük, mint ami megváltoztatva a mozgó test sebességét, illetve impulzusát, és ezáltal az erő szerepét játssza el:  F = dp/dt.

Véges változások

 Az infinitezimális tartományból át kell térni a véges méretű mozgásokra, amikor leírjuk a testek mozgási pályáját. Ennek matematikai eszköze az integrálás, amely által az erőtörvényből kiindulva eljutunk a mozgási pályához. A pálya alapvető jellemzője egy állandó, ami nem változik meg a mozgás során, ez valójában az energia definíciója. Az energiának két összetevője van, egyfelől a potenciális energia, amely létrehozza a mozgást, másfelől a már létrejött mozgáshoz tartozó energia, vagyis a mozgási energia. A kettő összege állandó, ami közvetlenül származtatható a newtoni erőtörvény integrálásával. Ennek konkrét alakja azonban eltér, attól függően, hogy van-e kapcsolat a tér és az idő koordinátái között. A klasszikus mechanika a független leíráson alapul, amely szerint az energia kifejezése a következő:

E = Ekin + Epot = ½mv2 + Epot = ½p2/m + Epot

Az Epot potenciális energia az erőből származtatható az erő által végzett munka kiszámításával, de járható a fordított út is, amikor a térkoordináták szerint deriváljuk a potenciál függvényt, ez a gradiens művelet:

F = –gradEpot(x,y,z).

A tér és idő összekapcsolódása

 A relativitáselmélet szerint a tér és időkoordináták összekapcsolódnak, ha valamilyen v sebességű rendszerben írjuk le egy test mozgását, ez a Lorentz transzformáció, amely akkor érvényes, ha a megfigyelést állandó v sebességgel mozgó koordinátarendszerben – vagyis inerciarendszerben – végezzük. A kiinduló elv, hogy a c fénysebesség állandó, vagyis független attól, hogy a megfigyelő és a fénykibocsátó objektum között mekkora a v sebesség. Ebből származtatható az invariancia törvény.

Eseménytávolság

Hasonlítsunk össze két „eseményt”, amit a tér és idő koordináták együttese ír le, nevezetesen S(r’, t’) és S(r”, t”). Az eseménytávolság definiálásához alakítsuk át az idő dimenziót térdimenzióvá a c fénysebességgel beszorozva. Ekkor ugyan térdimenzióhoz jutunk, de fennmarad a különbség az eseménypontok felcserélési szabályában, hiszen az idő esetén megfordul a távolság előjele, míg a tér koordináták esetén nem. A többdimenziós távolságképzésekor négyzetre emeljük a koordinátákat, ezért az előjelváltást úgy tudjuk figyelembe venni, ha az időből képzett koordinátát imagináriusnak vesszük, ennek megfelelően a téridő időkoordinátája ic·t lesz.  Viszont a négyzetes összegben a negatív előjelet a térkoordinátáknál alkalmazzuk, mert ez biztosítja, hogy az eseménytávolság valós értékű legyen:

Az így definiált eseménytávolság a téridő struktúrájának invariánsa, ami független a választott referenciarendszer sebességétől. Ez a szabály az alapja az inerciarendszerek ekvivalenciájának. Az invariancia azáltal valósul meg, hogy ha a referencia rendszer sebességét nagyobbnak választjuk, akkor az időbeli és térbeli távolság azonos mértékben csökken. Határesetben, amikor a sebesség a c értékhez tart a tértávolság nulla lesz, és az eseménytávolság megegyezik az időbeli távolsággal. A négyzetes összefüggés megengedi, hogy az eseménytávolság akár pozitív, akár negatív legyen. Ha azt akarjuk kifejezni, hogy az ok megelőzi az okozatot, akkor a pozitív előjelet választhatjuk t’ és t” sorrendjétől függően.

Kovariancia törvény

Koordináta transzformáció szempontjából az x, y, z és t koordináták azonosan viselkednek, mint a ∂/∂x, ∂/∂y, ∂/∂z, ∂/∂t deriváltjaik, és a kvantummechanikai operátor definíció szellemében megfogalmazhatjuk az invariancia szabályt a px, py, pz impulzusból és az E energiából felépített négyes vektorra is:

E2 = p2c2 + m02c4

Ezt az összefüggést nevezi a fizika kovariancia törvénynek. Ebben az invariánst az m0 nyugalmi tömeg képviseli. A nyugalmi tömeg tehát az eseménytávolság invarianciájának folyománya. Vezessük be a p0 = m0c impulzus dimenziójú mennyiséget, amikor is az

E2/c2 = p2 + p02

kifejezéshez jutunk. Itt a négyzetes összeadási formula már szuggerálja az értelmezést, hogy az energiában két impulzusvektor hatása összegződik, az egyik a külső mozgást írja le, a másik a részecskék saját impulzusa, amely gömbszimmetrikus forgást ír le, és így a külső és belső impulzusok négyzetösszegében a kereszttag átlaga eltűnik.

Nulla tértávolságú mozgások

A mozgás matematikai szempontból a tér és idő koordináták közötti függvénykapcsolat, amiben alapvető szerepet kapnak a differenciálhányadosok. Fizikai szempontból a mozgásokat két típusba soroljuk, a szokásos külső mozgás, amelynek alanya – tehát „ami mozog” – egy másik mozgástípus, amit belső, vagyis elemi mozgásnak nevezhetünk. Ez az elemi mozgás pedig nem más mint az elemi részecskék világa. Ebben a felfogásban úgy értelmezzük az elemi részecskéket, mint egy határértéken történő mozgásformát, amelyben a relativisztikus tértávolság nulla! Ez a fénysebességű mozgások alapelve, mely szerint nincs valamilyen eleve létező anyag a térben, például éter, hanem a téridőnek van egy sajátos mozgási állapota. Ezen elemi mozgásformák által lesz a matematikai térből fizikai tér, vagyis a teret nem tekintjük többé puszta rendezési elvnek, hanem fizikai világunk meghatározó entitásának fogjuk fel. De hogyan válik az elemi mozgás érzékelhető anyaggá, hogy jön létre a tömeg? (Csak megjegyezzük, hogy valójában nem is a tömeg az elemi mozgás legfontosabb jellemzője, az igazán lényeges állapotjellemző az impulzusnyomaték, azaz a spin.)

Tömegnövekedés és tömegteremtés

Mi az eredete a tömegnek? Ennek megértéséhez nyúljunk vissza a kovariancia törvényhez, és alkalmazzuk a tömeg és energia közötti E = m·c2 ekvivalencia szabályt, és vezessük be a külső impulzus számára a p = m·v jelölést. Ez elvezet a tömeg sebességfüggéséhez:

Ennek értelmében a vc határesetben a tömegnövekedés végtelenhez tart, vagyis a külső mozgás nem érheti el a fény sebességét tömeggel rendelkező objektumok esetén. Más a helyzet a téridő belső mozgásánál, mert ez a tömegmentes tér sajátmozgása! A tömegnélküliség mint nullához tartó határérték fogható fel, amelyet végtelenhez tartó tényezővel szorozva már véges értéket kaphatunk. A kovariancia törvénybe tehát „be van építve” a tömeg létrehozásának lehetősége. De önmagában az csak lehetőség, hogy a fénysebességű mozgás tömeget hozzon létre, ehhez még további feltételnek is teljesülni kell.

A fénysebességű forgásoknak két alaptípusa van, az egyik a körforgás, amit síkforgásnak is nevezhetünk, a másik a gömbforgás, vagy kettősforgás, ami a háromdimenziós tér minden irányán átfut. Az előbbi forgás típus alkotja meg a bozonokat, az utóbbi a fermionokat. A kettősforgással jellemzett fermionoknak már van tömege és töltése is, de ez mire vezethető vissza? A tömeg létrejötthez szükség van egy geometriai feltétel teljesülésére is. Fogalmazzuk ezt meg két elemi fogalommal, az egyik a valahol levés, a másik az összekapcsolódás! A valahol levés azt jelenti, hogy valamilyen fizikai objektum jelöli ki a tér pontjait. Ennek eszköze a gömbszimmetrikus forgás, vagyis a fermion. A gömbszimmetrikus forgás mennyiségi jellemzője a frekvencia, ez határozza meg a tömeget is: annál nehezebb odébb lökni ezt a belső forgást, minél nagyobb annak frekvenciája! A tömeg és frekvencia kapcsolatát a Planck elektromágneses hullámokra megadott összefüggése: E = h·f adja meg, amely összekapcsolható az anyag hullámtermészete miatt az E = m·c2 ekvivalencia szabállyal. Az f frekvenciájú forgáshoz tartozik egy r sugár is, ami a gömbforgások c értékű felszíni sebességéből következik: c = 4πr·f. (Figyelem: a térforgás egységsugarú gömbjének felülete 4π, szemben a körforgás 2π kerületével.) Körforgásnál viszont a c = 2πr·f összefüggés határozza meg a sugarat, vagyis a gömbforgás sugara fele lesz a körforgáshoz képest, a felezett sugár pedig feleakkora impulzusnyomatékot ad. Ez fejeződik ki abban, hogy a gömbforgásokkal definiált fermionok spinje S = ½, szemben a körforgással értelmezett S = 1 spinű bozonokkal.

A részecskék mint elemi mozgások

A részecskéket úgy értelmezhetjük mint a tér önfenntartó fénysebességű forgásait. Az előbbiekben már előrevetítettük, hogy a forgásoknak két alaptípusa van, az egyik a körforgás, illetve síkforgás, a másik gömbforgás, azaz térforgás. Az előbbi esetben a részecske síkforgásához tartozik egy helyváltoztató haladó mozgás is, amely történhet akár a forgástengely irányában, de lehet arra merőleges is.

A tömeget úgy értelmezhetjük, mint az objektum ellenállását külső mozgási állapotának fenntartásáért, ennek mértéke a tehetetlenségi erő. Ennek egyik formája a centrifugális erő, ami akkor lép fel, ha a fénysebességű forgás tömeget hoz létre. Viszont az önfenntartó forgás megköveteli, hogy létezzék egy visszatartó erő, ami ellensúlyozza a kifelé ható erőt:

Fcf = m·v2/r = p·v/r

A kifejezésben feltüntettük a p impulzust, hogy beszélhessünk centrifugális erőről akkor is, ha nincs nyugalmi tömeg, de az objektum rendelkezik impulzussal a fotonhoz hasonlóan. Ezt az impulzust Planck, illetve általános estben de Broglie nyomán a p = E/c = h·f/c összefüggés adja meg. Fénysebességű körforgás miatt a sebesség c = 2πr·f = ωr, és bevezetve a ħ = h/2π redukált Planck állandót, a következő kifejezés adja meg a centrifugális erőt:

Fcf = ħ·c/r2 = ω2ħ/c

A formulában szerepel a redukált Planck állandó, ami a fénysebességű forgás impulzusnyomatéka. Ez könnyen belátható az impulzus és a forgási sugár szorzatából: p·r = (h·f/c)·(c/2πf) = ħ. A fénysebességű forgás koncepció tehát annak felel meg, hogy a ħ Planck állandó nem csupán a foton energiáját határozza meg, hanem szerepet játszik valamennyi részecske felépítésében. De honnan származik az erő, ami kiegyenlíti a centrifugális erő hatását? Ehhez az általános relativitáselmélet adja meg a kulcsot, amikor a gravitációs erőt a tér görbületére vezeti vissza. De miért görbül a tér a tömeg körül? Erre magyarázatot a Lorentz kontrakció adhat: ha a tömegből gömbszimmetriájú forgás szabadul ki, melynek frekvenciája a Kepler törvény szerint változik, azzal értelmezni tudjuk a gravitációs erő távolságfüggését is. Ebben a szemléletben már nem oka a bolygómozgás törvényének a gravitációs vonzás, hanem megfordul a viszony: a gravitáció származik a forgásokból. Vagyis a forgás az elsődleges, ami megteremti a gravitációs erőt. Alkalmazzuk ezt az elvet a fénysebességű forgásra is! Ekkor a forgási centrumtól r távolságban a kerület nullára csökken, és így létrejön az 1/r2-tel arányos extrém mértékű térgörbület. Az innen származó ħ·c szorzattal jellemzett erőt nevezzük erős gravitációnak, amely két nagyságrenddel haladja meg a töltések közötti Coulomb kölcsönhatást az e2 = αħ·c összefüggés szerint, ahol α = 1/137 a Sommerfeld állandó.

Coriolis és Euler erők

A tehetetlenségi erők alapvető szerepet játszanak az egyes kölcsönhatások kiváltásában, ezért vegyük sorra ezeket. Forgó rendszeren belül történő v sebességű mozgásnál egy további tehetetlenségi erő lép fel, ez a Coriolis erő:

FCoriolis = 2m(vxω) = 2pxω

 A vektoriális szorzat azt fejezi ki, hogy ez a tehetetlenségi erő, akkor lép fel, ha a mozgási irány nem párhuzamos a forgási tengellyel. A fotonok haladó mozgása viszont párhuzamos a tengellyel, vagyis nem lép fel Coriolis erő. Éppen ez a tengellyel párhuzamos terjedési irány biztosítja, hogy a foton előrehaladása állandó frekvenciával és energiával menjen végbe, és a forgási sugár is azonos maradjon. A Coriolis erő hiánya magyarázza, hogy a nulla nyugalmi tömegű fotonnak miért nincs elektromos töltése sem.

Tehetetlenségi erő lép fel akkor is, ha egy külső forgatónyomaték a forgási frekvencia megváltozására kényszeríti az objektumot, ez az Euler erő:

FEuler = m·rxdω/dt

Az Euler erő a forgási síkban a mindenkori érintő irányában hat.

Összekapcsolódás

A térpontok nem függetlenek egymástól, közöttük erőhatások jönnek létre, ezt fejezzük ki az összekapcsolódás fogalmával. A kapcsolódást elemi forgások hozzák létre, melyek egyrészt fénysebességgel haladnak, másrészt c sebességgel forognak egy tengely körül. Ezek alkotják az elemi részecskék világának másik nagy csoportját, az S = 1 spinű kölcsönhatási bozonokat, amelyek közül már szó volt az elektromágneses kölcsönhatás közvetítőjéről, a fotonról.

A fizikai teret úgy foghatjuk fel, hogy az elemi mozgások által kijelölt pontjait elemi mozgások kapcsolják össze. A térpontok közötti kapcsolódásnak két iránya van, az egyik távolító, a másik közelítő. A távolító erőt nevezzük taszításnak, a közelítőt vonzásnak. Az üres tér, amelyben nincs anyag, vagyis nem léteznek benne elemi mozgások, csupán matematikai fikció, egyszerű rendezési elv. A fizikai tér viszont elemi mozgások összessége, amelyre ráépülnek a külső mozgások. Ezt az elvet képviseli az Einstein által megfogalmazott általános relativitáselmélet is.

Mezőelméletek

Milyen formái léteznek a tér pontjai – azaz az elemi objektumok – közötti kapcsolódásnak. A kérdést úgy vetjük fel, hogy miért éppen négy módja van a kölcsönhatásoknak, és milyen a viszony az egyes kölcsönhatások között? Szólni kell először a mezőelméletekről. De mi is a mező? A mező kölcsönhatási lehetőség. Itt a lehetőség fogalmának különös jelentősége van! Ennek illusztrálására nézzük az elektromos mező eredetét! Ha a térben elhelyezünk egy elektromos töltést, arra a töltéssel arányos erő hat. Ennek arányossági tényezője az elektromos mező. De hogyan épül fel ez a mező? E mögött a töltések összegzett hatása áll. Bármelyik két töltés között fellép a távolság négyzetével csökkenő Coulomb erő, amely lehet vonzás, vagy taszítás a két töltés előjelétől függően. A kölcsönhatásban lévő töltések száma az Avogadro szám (6·1023) nagyságrendjébe esik. Ennyi kölcsönhatást páronként összegezni lehetetlen, ezért együttes hatásuk leírására vezetjük be a mező (field) fogalmát. Van azonban egy bökkenője a definíciónak! Ha most odateszünk egy további töltést a mező hatásának mérésére, akkor ez a töltés is hozzájárul a mezőhöz, viszont ezáltal a töltés önmagára való hatását is bevisszük a leírásba. Persze mondhatjuk, hogy a töltések óriási száma miatt ez nem okoz gondot. Van viszont egy kivétel, ha a töltés sajátenergiáját akarjuk kiszámítani. Ezt úgy végzik el, hogy gondolatban a töltést apró elemekre bontják és elviszik a végtelenbe, majd a centrumba visszahozva kiszámítják, hogy a Coulomb erővel szemben ez mekkora munkavégzést jelent. Az eredmény végtelen lesz, ez a dilemmája mind a klasszikus, mind a kvantum mezőelméletnek, a kvantumelektrodinamikának. Mit kell kezdeni evvel a végtelennel? Valójában semmit, mert ez a végtelen az elkövetett logikai hiba „büntetése”. Egyrészt az elemi töltést nem lehet felbontani, másrészt a töltés nem hat önmagára, csak a többi töltésre.

Mágneses mező és a reltivitáselmélet

A mozgó töltések között fellép egy retardációs hatás is, amely forgató jellegű, ennek mértékét a v sebesség és a c fénysebesség aránya határozza meg. Ez a mágneses kölcsönhatás, amit az elektrodinamika a mágneses mezővel ír le. Ennek fellépését a retardációs effektus okozza: mivel minden hatás véges c sebességgel terjed, így nem elegendő a térkoordinátákat figyelembe venni két töltés közötti kölcsönhatásban, hiszen a hatás bekövetkeztekor a két részecske pozíciója már megváltozott. Emiatt az elektromágnesesség a négydimenziós téridőben érvényesülő kölcsönhatás. Maxwell korában, aki a klasszikus elektromágneses mezőelmélet végső formáját megalkotta, a relativitáselmélet még nem született meg, ennek ellenére ez a formalizmus már megfelelt a relativitáselmélet invariancia követelményének.

A fény kvantumelmélete: QED

A Maxwell elmélet nagy felismerése, hogy a fény mint elektromágneses hullám írható le, de ebben még a folytonossági elv érvényesült: nem létezett alsó határ egy adott frekvenciájú fény energiájában. Planck korszakalkotó felfedetése, hogy a fény is kvantumos, amelynek egysége a foton. Ez vezetett el az elektromágnesesség kvantumelméletéhez, a kvantumelektrodinamikához (QED), amely a virtuálisan kibocsátott és elnyelt fotonok hatására vezeti vissza az elektromos és a mágneses mezőt. Mivel a foton impulzussal és impulzusnyomatékkal is rendelkezik, ez ide-oda lökődést idéz elő a töltött részecske pozíciójában, és ide-oda perdülést az orientációban, ez hozza létre egyrészt az elektromos, másrészt a mágneses mezőt és ezek fluktuációját, amit kvantumfluktuációnak nevezünk.  A fluktuáció hatása kísérletileg megfigyelhető az anomális mágneses nyomaték értékében és a Lamb shiftben. (itt csak utalunk rá, más írásokban ezt részletesen kifejtésre került).

A fénysebességű forgások koncepciója ezt a képet azzal egészíti ki, hogy fermionok gömbszimmetrikus térforgásában a két forgás viszonya lehet balkéz, illetve jobbkéz szimmetriájú, akárcsak a tér három tengelyének iránya. A háromdimenziós tér kétféle geometriája a kiralitás. A fénysebességű forgásmodellben az egyik felel meg az anyagnak, a másik az antianyagnak. A tehetetlenség és a gravitációs vonzóerő tekintetében nem játszik szerepet a kétféle kiralitás, de annál fontosabb, ha értelmezni akarjuk az annihiláció során bekövetkező tömegeltűnést. Ezért célszerű pozitív tömegről beszélni az anyagnál és negatívról az antianyagnál, hasonlóan ahhoz, hogy pozitív és negatív töltésről beszélünk a részecskék és antirészecske párjuk esetén. A tehetetlenség szempontjából az előjel kettőssége azért nem játszik szerepet, mert a kovariancia törvény szerint (ez a mechanika legáltalánosabb törvénye!) a tömeg négyzete határozza meg az energia kifejezését.

Térjünk vissza az elektromágneses tér és a töltés eredetére. A kettősforgás komponensei között fellép a Coriolis erő, amely periodikusan felborítja az önfenntartó forgás erőegyensúlyát, ami egytengelyű forgások, azaz fotonok kibocsátásához és elnyeléséhez vezet (ezek a virtuális fotonok). A fénysebességű forgások koncepciója tehát nem csupán felhasználja a QED hipotézisét, amikor virtuális fotonokkal magyarázza az elektromágneses kölcsönhatást, hanem annak okát is megadja, hogy miért jön létre a fotonok kibocsátása és elnyelése, vagyis a kvantumfluktuáció.

A virtuális fotonok forgási iránya (polarizációja) kétféle lehet függően a fermion kiralitásától. A foton impulzussal rendelkezik, ami kibocsátáskor visszalöki a fermiont, de ennek iránya attól függ, hogy merre mutat a forgási irány. A kétféle polarizációs irány jelenik meg abban, hogy a töltés lehet pozitív és negatív, vagyis a kölcsönhatás lehet vonzás vagy taszítás. Taszítás jön létre, ha a két töltés előjele, azaz a kiralitás megegyezik, és vonzás az ellenkező esetben. Ha végül feltesszük a kérdést, hogy mi a töltés? A válasz: a fermiont övező virtuális foton felhő, amelyet a folytonosan kilépő és elnyelődő virtuális fotonok tartanak fenn. Ezek impulzusa hozza létre az elektromos, impulzusnyomatéka a mágneses mezőt.

Kvarkfizika, a hármasság világa

Kíséreljük meg, hogy fogalmi rendszerünket kiterjesszük a részecskefizika kvark modelljére is! Ez már teljességgel a virtuális részecskék világa, mert kvarkokat önállóan nem figyelhetünk meg. Létezésükhöz az kell, hogy az erős kölcsönhatás mezonokat és barionokat építsen fel belőlük. Az összetett részecskék közül a legfontosabb a két nukleon, a proton és neutron, ezek alkotják az atommagokat.  A fénysebességű forgás koncepcióban úgy fogalmazhatunk, hogy léteznek egyszerű és összetett kettősforgások. Egyszerű kettősforgás az elektron és családjának tagjai, a müon és a tau részecske, illetve ezek antianyag társa, mint például a pozitron. Ezek mind tiszta királis állapotok és töltésük –e és +e, tömegükhöz pedig pozitív, illetve negatív értéket rendelhetünk az annihiláció értelmezése érdekében. Az összetett kettősforgás viszont kevert királis állapotokat hoz létre, a gyenge kölcsönhatás „csomagolási technikája” egyenlő súlyt ad a két kiralitásnak, ennek eredménye a töltéssemleges és tömeggel nem rendelkező neutrínó. Az erős kölcsönhatás viszont a kettősforgás három szakaszra bontásával hozza létre a kvarkokat, ami törttöltéseket eredményez. A töltés ±⅔e és ±⅓e lehet, az előbbit nevezzük up típusnak (flavour), az utóbbi a down. Az kétféle előjel a részecske-antirészecske kettősségre utal, konkrétan a ⅔e és –⅓e töltésű kvarkokból épül fel a proton (két up és egy down), illetve a neutron (egy up és két down). Amíg a virtuális kvarkok kevert királis állapotok, a két illetve három kvarkból vagy antikvarkból felépülő megfigyelhető részecskék már tiszta királis állapotok, amelyek töltése az elemi töltés egészszámú többszöröse, vagy nulla. Tehát a megfigyelhetőség együtt jár a tiszta kiralitással.

A harmadolási szabály megmutatkozik az erős kölcsönhatás jellegében is. A gravitáció „alanya és tárgya” a tömeg, az elektromágnesességé a töltés, ennek megfelelően az erős kölcsönhatásnak is megvan a maga alanya és tárgya, amit színnek nevezünk. Az „egyarcú” gravitációt a pozitív tömeg, az elektromágnességet a kétarcú töltés (pozitív és negatív) hordozza, addig az erős kölcsönhatás „háromarcú”, amit a három színnek nevezett entitás játszik el. A színekre épülő erős kölcsönhatás elmélete a kromodinamika. Annak analógiájára, hogy az elektromágneses kölcsönhatást az S = 1 spinű fotonok közvetítik, az erős kölcsönhatásban ezt a szerepet a gluonok játsszák el. Ezek feladata a három-három színnel rendelkező kvarkok összekapcsolása. Ez összesen kilenc kombinációt jelent, de ebből egyet, amely totálszimmetrikus, kizár az elmélet, és összesen nyolc különböző gluonról beszél. Az atommagokban a protonokat és neutronokat is az erős kölcsönhatás kovácsolja össze. Ebben a folyamatban a kvarkok kicserélődése játssza el azt a szerepet, mint a molekulákban az elektron, amikor kötést hoz létre atomok között.

De honnan származik a hármasság? A színnek miért pont három arca van? A fénysebességű koncepció alapja, hogy a mozgás az elsőrendű entitás, minden más tulajdonság, legyen szó tömegről, vagy kölcsönhatási erőről, ebből fakad. A kvantumelmélet egyik fontos tanulsága a zérusponti rezgés. Ha működik egy kitéréssel arányos visszatartó erő, mint például molekulákban az egyes atomokat rögzítő kémiai kötés, akkor ez örökös rezgési állapotot (oszcillációt) tart fent még a legalsó energiaszinten is. A kötésben levés és a rezgés elválaszthatatlan. A nukleonok megalkotásában is működik egy kötőerő, az erős kölcsönhatás, ezért a nukleonokban is elválaszthatatlanul jelen van a zérusponti rezgés. A térnek három dimenziója van, mindegyikhez tartozik egy oszcillációs irány. Ez a három oszcilláció formálja meg azt az entitást, amit színnek nevezünk. A mozgás elsőbbségét valló felfogásban ez azt jelenti, hogy elsődlegesen létezik ez a három oszcillációs mozgási állapot, ami kiváltja az erős kölcsönhatást.

A fermionoknak három generációja van, egyszerű kettősforgások esetén az elektron, müon és a tau részecske. Három generáció létezik a kvarkoknál is. A magasabb generáció nagyobb tömeget jelent, vagyis nagyobb forgási frekvenciát, ami egyúttal kisebb saját sugárral jár együtt. Mi magyarázza az egyes frekvenciák értékét, vagy ha úgy tetszik a tömegeket? Erre jelenleg nem tud válaszolni a részecskefizika standard modellje sem.

Spontán és indukált folyamatok

A részecskék állapotának változása két fő típusba sorolható, az egyik az átmenet, a másik az átalakulás. Mindkettő bekövetkezhet spontán módon, de kívülről indukálva is. A spontán átalakulás és átmenet arra utal, hogy az összetett mikro rendszereknek van saját belső történetük is, még ha ezt nem is tudjuk nyomon követni, csak bekövetkezésükhöz valószínűségeket rendelhetünk. Példa rá, amikor az atom nagyobb energiájú (gerjesztett) elektronja spontán módon kisebb energiájú pályára ugrik, vagy, amikor a radioaktív izotópok elbomlanak. Az átalakulásokat elősegíthetjük elektromágneses sugárzással, ez már indukált folyamat, amelyben a tér különböző pontjai közötti kölcsönhatás jelenik meg. Az egyik pont, ahonnan elindulnak a sugarak, a másik, ahol a változás bekövetkezik.

EPR paradoxon

 Itt eljutottunk egy olyan ponthoz, ami számtalan félreértést, paradoxont idéz elő. Felteszik gyakran a kérdést: ha kiválasztunk egy neutront, meg tudjuk-e mondani, hogy mikor fog átalakulni? Csak annyit tudunk mondani, hogy negyedórán belül a neutronok fele fog átalakulni. Hol van a kérdésben a hiba? Ott, hogy csak akkor tudunk egy részecskét „kiválasztani”, ha látjuk, vagy kitapogatjuk. Amíg a neutron nem változik meg, nem ad magáról semmi hírt, vagyis nem látjuk, nem tudjuk „kitapogatni”. A mikrovilág fizikája, a kvantummechanika eleve tudomásul veszi, hogy vannak „láthatatlan” állapotok, ilyen például az elektron stacionárius állapota az atomban. Mivel az atomban nem látjuk az elektron mozgását, tartózkodási esélyéről csak valószínűségi kijelentéseket tehetünk. A kvantummechanika elmélete olyan matematikai módszer, ami elvégzi az esélylatolgatást, és emiatt valószínűségekről beszél az időbeli lefutás, a „pálya” pontos leírása helyett. Éppen ezért a kvantummechanikát nem kell, sőt nem is lehet „rejtett paraméterekkel” kiegészíteni, amiről az EPR paradoxon szól. (Az elnevezés Einstein, Podolsky és Rosen nevére utal, akik felvetették a kvantummechanika kiegészítésének szükségességét.) Az EPR paradoxont úgy kell értelmezni, mint egy logikai hiba „büntetését”.

Kvantumátmenet

Kvantumátmenetről akkor beszélünk, ha egy részecske állapota úgy változik meg, hogy a sajátfrekvenciája (tömege) és töltése ugyanaz marad. Erre példa, amikor az atomban kötött elektron megváltoztatja pályáját, például az L = 1 p pályáról átugrik az L = 0 s pályára (L az elektronpálya impulzusnyomatékának kvantumszáma). Ezt az átalakulást a foton S = 1 spinje közvetíti biztosítva az impulzusnyomaték megmaradását. Hasonló a helyzet, amikor a mágneses mezőben lévő elektron átugrik az Sz = ½ spin polarizációs állapotból az Sz = –½ állapotba. Ugyanilyen átmenetet hoznak létre a spinnel rendelkező atommagok is mágneses mezőben. Az átmenet mindig csak a részecske külső mozgását változtatja meg, de a belső mozgás változatlan marad a spin polarizációs irányától eltekintve.

Részecskeátalakulás és gyenge kölcsönhatás

Az átalakulás már a részecske belső, szerkezeti mozgását változtatja meg, ekkor megváltozik a sajátforgás frekvenciája (tömege), de megváltozhat a töltése is. Az előbbi eset következik be, amikor a müon, vagy tau részecske alakul át elektronná, az utóbbinak felel meg a neutron átalakulása protonná az alfabomlás során. Ehhez az összetett változáshoz már összetett közvetítő mechanizmusra van szükség, amit a gyenge kölcsönhatás elmélete ír le. Ennek főszereplője a W bozon, amely szöges ellentéte a fotonnak, mert van elektromos töltése és tömege is, ráadásul ez a tömeg messze meghaladja valamennyi megfigyelhető fermionét. A nagyon különböző tulajdonságok ellenére a W bozon mégis a foton közeli rokona: ez is egytengelyű forgás összekapcsolódva egy terjedő mozgással, amelynek iránya azonban merőleges a forgási tengelyre, ami pedig a forgási sugár fénysebességű növekedését idézi elő. A sugárnövekedés viszont frekvenciacsökkenéssel, azaz energiavesztéssel jár együtt. A W bozonnak van töltése is, mert a terjedési irány merőleges a forgástengelyre, azaz fellép a Coriolis erő. A töltés előjele lehet pozitív és negatív is a forgás polarizációs iránya szerint.  A tömeg létezését pedig az okozza, hogy a táguló W bozon mozgási centruma helyben marad – ellentétben a fotonnal – vagyis ez a részecske helyhez kötött mozgási állapot. A W bozon tömege valójában indulási, vagy képződési mennyiség. Viszont épp a gyors frekvenciacsökkenés teszi alkalmassá a W bozont, hogy átalakítsa az elemi részecskéket, mert a tágulás során végigpásztázva a rendkívül széles frekvencia skálát bármelyik fermionnal rezonanciába léphet. Erre épp azért van lehetőség, mert a W bozon tömege nagyobb, mint bármely fermioné a részecskefizika Standard Modellje szerint.

A fénysebességű mozgás önfenntartási elve kézenfekvő magyarázatot kínál arra is, hogy a neutron alfabomlásának első fázisában hogyan bocsáthat ki egy nála közel százszor nagyobb tömegű W bozont. Nem sérül ugyanis az energiamegmaradás elve, mert a tömegnek megfelelő energiát ellensúlyozza a térgörbület által létrehozott negatív potenciális energia. A fermiont alkotó kettősforgás a részecskehatáron nem lép túl, vagyis ott a frekvencia nullára csökken, a frekvenciaugrás pedig kiváltja az Euler erőt. Ennek nagysága attól függ, hogy milyen széles az a zóna, amelyben bekövetkezik a frekvencia lecsökkenése. Ez a részecske sugaránál jóval kisebb tartományban valósul meg, ezért nagyobb lesz az Euler erő, mint a fénysebességű kettősforgás ħc/r2 nagyságú centrifugális ereje. A centrifugális és Coriolis erővel szemben az Euler erő nem sugár, hanem érintő irányú, amiért az erő által kiléptetett egytengelyű forgáshoz tengelyre merőleges terjedés társul. Ezt a mozgást testesíti meg a W bozon. Mivel a zónaszélesség csak kisebb lehet, mint a részecskesugár, így a kilépő bozon tömege nagyobb lesz, mint a kibocsátást végző fermioné. A kölcsönhatás második fázisában a neutronból (a kvark elméletben a down részecskéből) kilépő S = 1 spinű W- bozon úgy alakulhat át S = ½ spinű elektronná, ha ennek során egy töltéssemleges neutrínó is létrejön. Ez biztosítja az impulzusnyomaték (spin) megmaradását. A neutrínó töltéssemlegessége annak felel meg, hogy ekkor a kétféle kiralitás egyenlő súllyal van jelen. A kétféle kiralitás egyenlő súlya nem csak a töltést, hanem a tömeget is megszünteti. Ez összhangban van a megfigyeléssel, hogy a neutrínó fénysebességgel mozog. A Napból érkező neutrínók száma elmarad az elméletileg várt értéktől, amit a neutrínó oszcillációval magyaráznak. Ebben feltételezik, hogy a különböző generációjú fermionok átalakulásából származó neutrínók eltérő tömeggel rendelkeznek. Erre a hipotézisre azonban nincs szükség, mert a neutrínó – még ha nem is rendelkezik tömeggel – impulzusa attól még lehet, akár csak a nullatömegű fotonnak. A neutrínó oszcilláció pedig magyarázható az impulzusok különbségével is.

Ahhoz hasonlóan, ahogy a gyenge kölcsönhatás egybecsomagolja a két királis kettősforgást, a kétféle polarizációjú síkforgás is egybeköthető, ez a mozgási állapot a gyenge kölcsönhatás semleges Z bozonja. Az elektrogyenge kölcsönhatás mezőelmélete csokorba köti a fotont és a három gyenge kölcsönhatási bozont (W+, W-, Z), jelentős lépést téve a közös mezőelmélet megalkotása felé. Ennél is továbblép a kromodinamika beillesztése az egységes mezőelméletbe, amelyben már 12 bozon szerepel a 8 gluon felvétele miatt. Egyedül a gravitáció maradt ki a sorból, amit nem sikerült kvantumos alapra helyezni. A kudarc okát abban látom, hogy a feltételezett gravitációt közvetítő graviton nem létezik, sőt szerintem nem is létezhet.

A gravitáció közvetítője: a kepleron

Bár spinnel rendelkező graviton nem létezik, még sincs arról szó, hogy a gravitációnak ne lenne közvetítő mechanizmusa. A fermionból kiléphet a kettősforgás is a tehetetlenségi erők (Coriolis, Euler, centrifugális) kombinációja révén, de a kilépő forgás frekvenciája sok-sok nagyságrenddel lecsökken. Ez azt eredményezi, hogy a részecske határán az extrém görbület nem csökken le teljesen nullára, egy kicsiny térgörbület fennmarad, és ez a távolsággal tovább csökken a Kepler törvénynek megfelelően. A forgás kerületi sebessége a fénysebességtől messze elmarad, de a Lorentz kontrakció révén így is létrejön egy kicsiny térgörbület, ami a szokásos gravitációt eredményezi. A lassú kettősforgások felhőként övezik a fermiont, de ennek a felhőnek nincs tömege, impulzusa és impulzusnyomatéka sem, vagyis nem tekinthető sem bozonnak, sem fermionnak. Ezt a sajátos mozgást nevezzük el Kepler tiszteletére kepleronnak!  Vagyis a fermionokat két felhő veszi körül, az egyiket a virtuális fotonok alkotják, a másik a kepleron felhő. Az előbbinek van impulzusa és impulzusnyomatéka, ezáltal fejti ki hatását, az utóbbi viszont a tér szerkezetét szabja át. A görbületek összeadódnak és bármilyen csekély az egy-egy részecske által okozott görbület, a részecskék hatalmas száma miatt –  bolygó, vagy csillag méretekben – már a gravitációs erő dominanciára tehet szert, és fekete lyukakban még a fényt is foglyul ejtheti.

Oksági lánc és távolhatás

A modern fizika törekvése, hogy minden kölcsönhatást bozonokkal írjon le, mintha elfelejtkezne valamiről, mégpedig a neutrínók egyik fontos funkciójáról. Mielőtt erre rátérnénk térjünk vissza az elektromos kölcsönhatásra!. Valahol a térben, lehet az akár egy távoli csillagban, vagy galaxisban is, egy elektron átugrik egy másik állapotba és kibocsát egy fotont. Itt a Földön, például a szemünkben, egy másik elektron elnyeli ezt a fotont és megváltoztatja állapotát. Miről van tehát szó? Két távoli elektron kerül egymással kölcsönhatásba, ezt oksági láncolatként fogjuk fel, és a fény (foton) fogalmával kötjük össze. Lépjünk tovább! Most egy neutron alakul át valahol, például a Napban, és alfabomlással átalakul protonná miközben kibocsát egy elektront és egy neutrínót. Ez a neutrínó is hosszú útra kel és megérkezve a Földre, egy protont átalakít neutronná. Itt is arról van szó, hogy két részecske, most egy neutron és egy proton, oksági kapcsolatba kerül. Ezt az átalakulást közvetíti a neutrínó. A neutrínó viszont fermion, vagyis a kölcsönhatások közvetítése nem egyedül a bozonok kiváltsága. Miért lenne hát kötelező a gravitációt is bozonok közreműködésének tulajdonítani? Indokolt tehát a törekvés, hogy más típusú elemi mozgást keressünk a gravitáció közvetítésére, így kerül a képbe a kepleron. Másik tanulság, hogy a gyenge kölcsönhatás nem kizárólag rövidtávon működik. Ennek a kölcsönhatásnak ugyanis két arca van, az egyik valóban csak közvetlenül a részecske határon fejti ki hatását, ezt végzi el a W bozon. A másik viszont távolba hat, ezt az átalakítást már egy fermion, a neutrínó hajtja végre.

Összefoglalás

Fizikai világunkat a tér fénysebességű sajátmozgásai építik fel. A tér pontjait gömbszimmetrikus kettősforgások, vagyis fermionok jelölik ki. Ezek önfenntartó mozgások, ahol egyensúlyban van a kifelé ható centrifugális erő és a befelé húzó erős gravitáció, amit a fénysebességgel forgó tér görbülete hoz létre. A fermionok összekapcsolódnak fénysebességgel terjedő mozgások kibocsátása és elnyelése által. A folyamatokat fénysebességgel forgó rendszerben működő tehetetlenségi erők (Coriolis és Euler) idézik elő.

Minden kölcsönhatást valamilyen fénysebességgel terjedő mozgás közvetít, ez bozon az elektromágneses és erős kölcsönhatásban (foton, illetve gluonok), a gyenge kölcsönhatásban egy bozon és egy fermion együttműködése játszik szerepet (W és Z bozon, illetve neutrínó), a gravitációt viszont spinnel nem rendelkező kettősforgások (kepleronok) hozzák létre.

Végül foglaljuk össze, hogy mi az a fizikai entitás, ami kiváltja a kölcsönhatást, és mi az, amire hat:

  • A gravitáció alanya és tárgya a tömeg, vagyis a fénysebességű kettősforgás tehetetlensége,
  • az elektromágneses kölcsönhatásé a töltés, vagyis a virtuális foton felhő,
  • az erős kölcsönhatásé a szín, vagyis a zérusponti rezgés három iránya,
  • a gyenge kölcsönhatásé a kettősforgás frekvenciája és kiralitása.

Így valósul meg a mozgás primátusa a fizika világában.

Miért dominál az anyag az antianyag felett?

c0d2dcdf954f7d912a0f5d5ab72da4e2.png 

Korábbi bejegyzések elérése

Előző bejegyzés

A kozmológiai elméletek vitatott kérdése, hogyan vált uralkodóvá az anyag az antianyag felett, A részecskefizika Standard Modellje szerint az elemi objektumokra vonatkozó bomlási és képződési szabályok nem különböznek az anyaginak és antianyaginak tekintett részecskék esetén. Amikor nagy energiájú sugárzás részecskepárokat hoz létre, például elektront és pozitront, vagy protont és antiprotont, a két részecske száma kötelezően egyenlő. Az egyenlőségi szabály vonatkozik az annihilációra is: mindig azonos számú elektron és pozitron, illetve proton és antiproton semmisíti meg egymást a szétsugárzás folyamán.

Az anyag domináns szerepének értelmezéséhez ezért fel kell tételezni, hogy a képződő elemi objektumokra vonatkozó egyenlőség csak statisztikai értelemben igaz. A statisztikai véletlen szabályozza a kvantumfolyamatokat, emiatt bár a részecskék egyenlő valószínűséggel képződnek a valószínűség ingadozási szabálya miatt hol az egyik, hol a másik ideiglenesen többségbe kerülhet. Az univerzum ősi forró állapotából való lehűlés lehetővé tette a részecske képződést, melynek során az anyagtípusú részecskék, így a protonok és elektronok kis többsége alakulhatott ki a statisztikai ingadozás következtében. Amikor viszont beindult a nagy „leszámolás”, és a részecskék és antirészecskék „felfalták” egymást, az anyagi típusú részecskék pillanatnyi többsége megőrződött. Az akkori csekély többség alkotja jelenleg az univerzum több milliárd galaxisának anyagát.

Vessük fel a kérdést: emlékeztet-e bármi is az akkori univerzumra, ahol a részecskék és antirészecskék statisztikai egyensúlyban voltak, vannak-e jelenleg is ilyen objektumok? Két olyan különös objektumról beszélhetünk, ahol az anyagi és antianyag jelleg egyensúlyban van. Az egyikbe tartoznak bizonyos egzotikus atomok, a másiknak felelnek meg a mezonok az elemi részecskék közül.

Ilyen egzotikus atom a pozitronium, amelyben egy pozitron és egy elektron „kergeti” egymást. Ez a Hidrogén atom könnyű” változata, amelyben szintén egy pozitív és egy negatív részecske van jelen. A Hidrogénben a proton tömege közel kétezerszerese az elektronnak, ezért első közelítésben a proton mozdulatlannak tekinthető, amely körül végzi mozgását az elektron. Az elektron pályáját az jellemzi, hogy a keringéshez tartozó impulzusnyomaték a redukált ħ Planck-állandó egészszámú többszöröse. Ebbe belefér az is, hogy az impulzusnyomaték nulla, ezt nevezzük s pályának. De lehet ez a nyomaték ħ is, ez a p pálya, lehet 2ħ is, ez a d pálya, és még sorolhatnánk. Az impulzusnyomaték diszkrét változása jellegzetes kvantummechanikai jelenség. Ez eltér a makroszkopikus testek keringési szabályától, ahol megengedett az impulzusnyomaték folytonos változása, legalább is elvben.  A pozitroniumban is olyen szimmetriájú pályák alakulnak ki, mint a Hidrogén atomban. de ekkor nem beszélhetünk mozgási centrumról, hanem a két azonos tömegű részecske egymáshoz képesti mozgásáról van szó. Ezt a mozgást szokás úgy ábrázolni, hogy a két részecske egy köralakú pályán kergeti egymást. Példa rá a wikipedia szócikkében szereplő rajz is:

 

A legkisebb energiájú pálya a belső s pálya, amelynek valószínűség eloszlása gömb szimmetriájú. A valószínűségi eloszlás azonban nem azt jelenti, hogy a részecske az s pályán ténylegesen körbefut. A körpályának ugyanis nullától különböző sugara van, amiért nem lehet nulla az impulzusnyomatéka. A gömbszimmetriájú eloszlás csupán azt jelenti, hogy a két részecske között fellépő elektromágneses vonzás gömbszimmetrikus, vagyis az elektron „nem észlel” irányokat. A szokásos térszemlélet azonban három dimenzióra épül, így a kvantummechanika az iránytól független erőt gömbszimmetrikus potenciállal írja le. Viszont hogyan lehet a keringési pályának nulla az impulzusnyomatéka? Csakis úgy, ha a mozgási pálya áthalad a centrumon. A pozitroniumban ez a centrum a két részecske helyének felezőpontjára esik. A mozgás tehát úgy történik, hogy a két részecske időnként összeér a felező ponton, majd szétválnak a pozíciók, miközben a mozgás iránya mindig azonos marad. Tánchasonlattal élve a két részecske nem körtáncot lejt, hanem a szvingnek megfelelő mozgást hajt végre.

De milyen hosszú ideig tart az elektron és pozitron együttélése? A válasz megadásához tudni kell, hogy kétféle pozitronium létezik. Ennek oka, hogy az elektronnak és pozitronnak perdülete, spinje van, amelyhez ½ħ impulzusnyomaték tartozik, az ½ együtthatót nevezzük spin kvantumszámnak, a feles spinű részecskék a fermionok. Az olyan objektumban, ahol két fermion van jelen a spinek összeadódnak, vagy kivonódnak és az eredő spin lehet 0, vagy 1. Ennek megfelelően a pozitronim spinje is lehet nulla, ez a szingulett állapot, amit meta állapotnak is nevezünk, de szintén létezik olyan pozitronium is, ahol az S = 1 triplett állapot valósul meg, ez az orto pozitronium. Az egész spinű objektumok összefoglaló neve a bozon. A két pozitronium energiája közel azonos (6,8 eV), az alapállapotok kismértékben különböznek (0,001 eV a különbség), viszont élettartamukban nagy az eltérés, az S = 0 állapot élettartama 0,12ns, míg az S = 1 tripletté 142 ns. Ezt összevetve az elektron-pozitron kontaktusok gyakoriságával, azt kapjuk, hogy az egyik esetben millió, a másikban milliárd kontaktus szükséges az annihiláció bekövetkezéséhez, vagyis az annihiláció erősen spin függő jelenség.

A másik példa a mezonok esete. Ezek összetevői a kvarkok, melyek között egyaránt vannak anyagi és antianyagi részecskék is. A törttöltésű kvarkoknak két alaptípusa és három generációja van, ahol a generációk tömegükben különböznek, a magasabb generációknak jóval nagyobb a tömegük. Az első generáció kétféle kvarkja az up és down, melyek töltése az elemi töltés 2/3-a, illetve 1/3-a. A töltések előjele lehet pozitív és negatív, attól függően, hogy részecskéről, vagy antirészecskéről beszélünk. Anyagi részecske esetén az up pozitív, a down negatív töltéssel rendelkezik, antirészecskék esetén az előjel fordított. A mezonokat mindig egy anyagi és egy antianyagi kvark építi fel, ez biztosítja, hogy a mezon töltése csak az elemi töltés egészszámú többszöröse lehet.  A mezonok családjának leghosszabb élettartamú és legkisebb tömegű tagja a pion, vagyis a pi mezon, amelyet a kétféle első generációs kvark épít fel és spinje S = 0, vagyis a két összetevő kvark ellentétesen polarizált, viszont a töltése lehet 0, illetve ±e is. A töltéssel rendelkező pion élettartama rendkívül hosszú (12ns) a többi mezonhoz képest. Ennek oka, hogy a bomlást kizárólag a gyenge kölcsönhatás vezérli és nincs szerepe az elektromágneses kölcsönhatásnak. Természetesen az univerzum életében a mezonokban megnyilvánuló anyag és antianyag együttélés így is csak egy röpke pillanat.

Az anyag dominanciájának képviselői a fermionok, mégpedig a három kvarkból, vagy antikvarkból felépülő barionok. Legfontosabb képviselőjük a két nukleon, a proton és neutron, melyek az up és down kvarkokból épülnek fel. Ezek alkotják a periódusos rendszer mintegy 100 elemét és építik fel az univerzum anyagi világát. Ezekben a hármas kombinációkban soha sincs együtt anyag és antianyag. Az anyag dominanciáját tehát a kvarkok hármas összefogása teremti meg.

süti beállítások módosítása